
Imperial College London
Department of Computing

Symbolic execution of verification languages
and floating-point code

Daniel Simon Liew

April 2018

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London



Declaration of Originality

The work presented in this thesis is my own original work except where acknowledged other-

wise.

1



Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative Com-

mons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, dis-

tribute or transmit the thesis on the condition that they attribute it, that they do not use it for

commercial purposes and that they do not alter, transform or build upon it. For any reuse or

redistribution, researchers must make clear to others the licence terms of this work.

2



Abstract

The focus of this thesis is a programanalysis techniquenamed symbolic execution. Wepresent

three main contributions to this field.

First, an investigation into comparing several state-of-the-art program analysis tools at the

level of an intermediate verification language over a large set of benchmarks, and improve-

ments to the state-of-the-art of symbolic execution for this language. This is explored via a

new tool, Symbooglix, that operates on the Boogie intermediate verification language.

Second, an investigation into performing symbolic execution of floating-point programs via a

standardised theory of floating-point arithmetic that is supportedby several existing constraint

solvers. This is investigated via two independent extensions of the KLEE symbolic execution

engine to support reasoning about floating-point operations (with one tool developed by the

thesis author).

Third, an investigation into the use of coverage-guided fuzzing as a means for solving con-

straints over finite data types, inspired by the difficulties associated with solving floating-point

constraints. The associated prototype tool, JFS, which builds on the LibFuzzer project, can at

present be applied to a wide range of SMT queries over bit-vector and floating-point variables,

and shows promise on floating-point constraints.
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Chapter 1

Introduction

Bugs in software are a huge problem. Aside from causing user frustration software bugs can

lead to critical security vulnerabilities. For example the heavily publicised “heartbleed” [88]

and “shellshock” [59] vulnerabilities are the result of latent bugs in heavily used open-source

software. Software bugs have also lead to serious financial loss [127] and even death [118]. It

has been observed [170] that fixing bugs late in the software development cycle is financially

more expensive than fixing them earlier. Thus, it is desirable to detect and fix software bugs

as early as possible during the software development process.

There exists a variety of techniques to detect bugs. It is well known that a common approach

taken by developers is to manually write test cases to check that the software behaves as ex-

pected when run in a particular scenario (i.e. manual testing). This approach is far from ideal:

not only is it very time consuming, it also easily allows latent bugs to remain hidden due to de-

velopers not considering edge cases.

Researchers have expended considerable effort investigating different approaches to improve

on or complement manual testing through automatic and semi-automatic techniques. One

such technique —symbolic execution— is the focus of this thesis.

Symbolic execution [102] is an automated technique to enumerate and explore the feasible

paths of a program. The feasibility of each path is checked using a constraint solver. For

each executed path, a test case can be generated that can be used to replay execution along

that path. These automatically generated tests can then be used to create a high coverage test

16



suite. During execution it is also possible to automatically check for failing assertions1 and

low-level bugs (e.g. use of undefined language behaviour). Test cases for these bugs can also

be generated which can be very valuable to a developer.

While symbolic execution has shown potential [80], it has not seen wide spread adoption due

to the limited domains in which it can be effectively applied. For example symbolic execution

does not scale well to large programs due to the number of program paths growing exponen-

tially with the number of branches [41].

In this thesis we investigate applying symbolic execution to domains that previously had not

seen much investigation: intermediate verification languages (IVLs) and floating-point arith-

metic.

In Chapter 2 we discuss the necessary background and related work to understand our work.

In Chapter 3 we discuss applying symbolic execution to the domain of IVLs. These languages

are designed to aid the development of static verification tools. Static verification, stemming

from the seminal work by Hoare [89] and Floyd [74] is another technique that can be used to

find bugs in programs. However static verification is different from symbolic execution in

that it tries to prove the absence of bugs on all program paths at once rather than iteratively

checking each program path. This makes static verification well suited to checking an entire

program but less helpful when a bug is reported. Symbolic execution on the other hand is

typically more useful for bug finding due to (usually) not having abstractions that introduce

false positives and result in hard to read error traces; and is able to generate test cases for each

bug found.

Intermediate verification languages are designed to provide a separation of concerns. A well

designed IVL should be a simple programming language that abstracts away the details of a

particular programming language (e.g. C [95]), and implementation (i.e. compiler and hard-

ware architecture) so that a verifier (“back-end”) does not need to know about these details.

Examples of language specific details for C include: unsigned integer overflow rules (6.2.5/9

in [95]), and signed integer overflow having undefined behaviour (6.5/5 in [95]). An example of

an implementation specific detail in C is object alignment (6.2.8 in [95]).

1Typically provided by the developer
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At the same time a well designed IVL should not prescribe any particular verifier implemen-

tation so that the translator from a programming language to the IVL (“front-end”) does not

need to know precisely how the verifier is implemented. In particular there is no reason why

the “back-end” couldn’t use symbolic execution. However few attempts at doing this have been

reported [151, 110].

The research problem we address is as follows. Although symbolic execution has known ad-

vantages over other verification techniques, no direct comparison between these techniques

has been performed at the IVL level. Thus we perform a comparison of different tools (and

by proxy different techniques) that all operate on the same IVL with the goal of testing two hy-

potheses:

1. Symbolic executionof an IVL is competitivewith other techniques in termsof bugfinding

and verification.

2. The state-of-the-art for symbolic execution of IVLs can be improved.

To answer the first hypothesis we perform a comparison of several existing tools that target

the Boogie IVL [116] —a popular IVL with several existing front and back ends— over a large

collection of diverse benchmarks.

To answer both hypotheses we implement our own tool named Symbooglix (Symbolic Boogie

executor) for the Boogie IVL (itself a contribution). We incrementally and systematically im-

prove the tool’s performance and then include it in the comparison with other tools. The com-

parison shows that Symbooglix significantly outperforms an existing symbolic execution tool

for the Boogie IVL (supporting our second hypothesis) and is highly competitive with a veri-

fier optimized for verifying code written for the CUDA and OpenCL programming languages.

While Symbooglix is generally less effective than two other state-of-the-art verifiers it is com-

plementary to these tools. This partially supports our first hypothesis.

The tool comparison uses a variety of different benchmark programs to compare the tools.

However it contains very few programs that make use of floating-point arithmetic. One pos-

sible reason for this is that (at the time of performing experiments) the Boogie IVL has no

support for floating-point types. In order to verify floating-point programs, the Boogie front-
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ends resort to crude approximations that can result in back-ends reporting false positives and

negatives. However floating-point programs should not be ignored which leads us to the next

chapter.

InChapter 4wediscuss applying symbolic execution to thedomainof programs that usefloating-

point arithmetic. As previously mentioned symbolic execution relies on a constraint solver

to determine the feasibility of paths. Most symbolic execution tools do not support directly

reasoning over constraints using floating-point arithmetic due to a lack of support from the

underlying constraint solver. This is the research problem we tackle.

Recent advances in solver technology have led to support for floating-point reasoning being

added to several constraint solvers. This has been accompanied by an effort to provide a stan-

dardised theory of floating-point arithmetic for solvers to implement [160].

Inspired by these advances in floating-point support in constraint solverswe hypothesised that

the standardised theory of floating-point arithmetic can be used by symbolic execution tools

to reason about path constraints. Unfortunately the Boogie IVL’s lack of support for floating-

point types meant that Symbooglix was not a suitable tool to test this hypothesis.

Instead we turn our attention to the KLEE [38] symbolic execution tool which executes the

LLVM intermediate representation (IR) which does support floating-point types. The tool al-

ready supported floating-point operations with concrete operands and thus is a good starting

point for investigating our hypothesis. We extend the KLEE tool to use the Z3 [140] constraint

solver to handle floating-point constraints.

During this work we became aware of another group of researchers building a very similar

tool. We decided to collaborate by developing a floating-point program benchmark suite and

performing a comparison of each group’s tool on these benchmarks to gain insights into the

different design decisions made by each research group. Several insights were gathered from

this work including answering our hypothesis. While it is indeed possible to use the theory of

floating-point arithmetic supported by constraint solvers for symbolic execution of floating-

point programs, such an approach does not scale well due to poor constraint solver perfor-

mance on floating-point constraints which dominates the execution time of the tools. This

research problem directly lead to our work in Chapter 5.
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In Chapter 5 we discuss a technique to solve floating-point constraints. The key idea is to con-

struct a programwhere the reachability of a particular statement in the program is equivalent

to finding a satisfying assignment to the constraints being solved. To find a satisfying assign-

ment another bug finding technique —fuzzing [136]— is employed. Our hypothesis is that this

approach will in some cases solve floating-point constraints faster than existing approaches.

To test this hypothesis we develop a research prototype named JFS (JIT Fuzzing Solver) that im-

plements this idea and perform an evaluation of its performance compared to several existing

constraint solvers on three benchmark suites. Our evaluation shows that JFS is very competi-

tive with existing solvers on floating-point benchmarks, both in terms of execution time and in

the number of benchmarks solved. The results also show that JFS is not competitive with ex-

isting solvers on bit-vector benchmarks. However, JFS is able to complement existing solvers

on a small subset of these benchmarks by being able to solve them faster than existing solvers.

These results support our hypothesis.

Finally in Chapter 6 we discuss future directions for our work and conclude.
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Chapter 2

Background and related work

We now review the necessary background and related work for subsequent chapters.

The primary focus of this thesis is symbolic execution, however beforewe discuss this, we first

discuss the broader field of program analysis in §2.1 to which symbolic execution belongs.

We then discuss symbolic execution in §2.2 which will be used in chapters 3 and 4. We then

discuss the field of static verification in §2.3, which includes a discussion of the Boogie IVL and

related tools which will be used in Chapter 3. We then discuss fuzzing in §2.4 which will be

used in Chapter 5. We then discuss floating-point arithmetic in §2.5 which will be important to

chapters 4 and 5. This includes a discussion of existingwork to analysefloating-point programs

relavant to Chapter 4. Finally in §2.6 we discuss constraint solvers which are relevant to all

three bodies of work (chapters 3, 4, and 5).

2.1 Program Analysis

Program Analysis is a broad term that describes any technique that attempts to compute one

or more properties of a computer program. Example properties might include “all pointer

accesses are precededby a check forNULL”, “no assertions fail”, and “theprogram terminates”.

23



Program analyses have a number of uses but their primary uses are to aid program optimiza-

tion in compilers and to check varying degrees of program correctness. Program optimization

is not the focus of this thesis sowe shall not consider this further. The keen readermaywant to

read any good text book on compiler construction (e.g. [4]) for more on program analysis for

compilers.

Program correctness can be defined as some set of properties always holding during the exe-

cution of a program. For example we could construct a simple program analysis that checks

for syntactic occurrences of division by zero. Such an analysis is effectively checking the prop-

erty that “the program is free from trivial divisions by zero”. While such an analysis is easy

to implement and could be used to issue helpful compiler warnings to developers, it does not

provide very strong guarantees to a developer. For example what about freedom from non

trivial divisions by zero, or even stronger properties such as freedom from memory leaks or

crashes? Thus to aid developers we should aim to check properties that the developer would

like to hold during program execution. If a property can be shown to not always hold during

program execution then this is a property violation, also known as a bug. Hence forth we will

use these terms interchangeably.

If all the properties that we wish to hold for a program do hold then we refer to the program

as being correct, otherwise it is incorrect. We can place program properties into one of three

disjoint categories; Functional, Performance, andGeneral. Functional properties describe the

high-level behaviour of a program (e.g. a function takes a list of integers and returns a sorted

list). Performance properties describe the runtime performance of a program (e.g. a function

sorts a list of integers in O(n logn) time). General properties describe low-level program be-

haviour and typically describe freedom from low-level language errors such as NULL pointer

dereferences and data races. General properties are often a target for program analysis tools

because their description is dependent only on the programming language used by a program

and not on the program itself. This means these properties need only be described once and

then re-used many times. The other properties are dependent on the particular program be-

ing analysed and so must be provided for each program, usually by the developer.

An issue worth considering is how precise a program analysis is. The previous example of

syntactically checking for occurrences of division by zero is not precise. It assumes that all

program statements are reachable which is an over-approximation. This over-approximation
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means that bugs may be reported, even though they can never occur when running the pro-

gram. Incorrectly reporting a bug that cannot occur is referred to as a false positive (F+). Table

2.1 shows terminology commonly used to describe classification of property violations.

Property actually
Analysis reports property holds does not hold

holds T− F+

does not hold F− T+

Table 2.1: Terminology used to describe the classification of property violations (bugs) in pro-
grams by program analyses.

A true negative (T−) is where the analysis determines the property holds (i.e. no bug is re-

ported) and this property does hold during program execution. A false negative (F−) is where

the analysis determines the property holds but this property does not hold during all possible

program executions. Finally a true positive (T+) is where the analysis determines the property

does not hold (i.e. a bug is reported) and this property does not hold during programexecution.

An analysis that never produces false negatives is referred to as sound, that is to say the analysis

never incorrectly reports a property to hold. An analysis that never produces false positives is

referred to as complete, that is to say the analysis always reports that a property holds for all

programs where that property actually holds.

An example of a trivial sound analysis is an analysis that reports, for all programs that the prop-

erty always fails. This is of course not very useful. An example of a trivial complete analysis is

an analysis that reports, for all programs that the property always holds. Again this isn’t very

useful.

It is actually impossible to have an analysis that is sound and complete for all programs. Such

an analysis would only report true negatives and true positives. This would therefore require

the analysis to be able to solve the undecidable [172] halting problem to determine whether or

not a fragment of code known to violate a property was reachable.

Is all hope lost? Well, no. First there exists a subset of programs where the halting problem

is decidable and so on that subset of programs it is possible for a program analysis to be both

sound and complete. Second a program analysis can assume that a program terminates and
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add the caveat (that program termination is assumed) to the property being analysed. Finally a

programanalysis can be designed such that it allows some incompleteness in order to increase

soundness or vice versa.

Thus far we have said nothing of how program analyses are implemented. A dichotomy be-

tween static analysis and dynamic analysis is often used when classifying program analyses.

A static analysis is an analysis that computes properties of programs without executing it,

whereas a dynamic analysis does so by executing it.

Static analysis covers a broad range of techniques such as linting [97], data-flow analysis [101],

model checking [48, 155], abstract interpretation [58], andweakest pre-conditiongeneration [65].

Static verification is a subset of static analysiswhere an analysis tries to statically show that one

or more properties relating to program correctness hold. Static verification is highly relevant

to the work in Chapter 3 and so is discussed further in section 2.3.

Dynamic analysis covers a range of techniques. Most techniques are used for bug finding.

Some techniques instrument programs with additional code to detect and report bugs at run-

time. Well known examples include memory error detectors such as AddressSanitizer [163],

and Valgrind [142]; and ThreadSanitizer [164], a race detector. A dynamic analysis does not

have to detect bugs, one such analysis is Daikon [69] which detects likely program invariants

at runtime, which can then be used by other analyses. Symbolic execution and fuzzing are two

dynamic analysis techniques highly relevant to this thesis and so are discussed further in sec-

tions 2.2 and 2.4 respectively. Symbolic execution is used by chapters 3, and 4; and fuzzing is

used by Chapter 5.

Dynamic analyses are typically more precise than static analyses because they have access to

information only available at run time. However, because the analysis is performed at runtime

rarely executed but buggy paths might be missed. In contrast static analyses can consider

the paths that a dynamic analysis might miss but may need to resort to approximations (intro-

ducing imprecision) to improve scalability or avoid requiring information only known at run

time.
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2.2 Symbolic execution

Symbolic execution is a program analysis technique that provides the ability to automatically

enumerate the feasible paths through a program. The technique will be used in chapters 3 and

4. We first provide a brief introduction to symbolic execution. This is then followed by a dis-

cussion on its scalability (§2.2.1), concolic execution (§2.2.2), and the program representations

used by symbolic execution (§2.2.3).

The technique was first introduced by King [102] in 1976 but has seen renewed interest [41]

due in part to improvements to the constraint solvers on which the technique relies, and the

increased performance in computers since the technique’s inception.

It has been implemented inmany different tools [37, 162, 79, 38, 6] and applied tomany differ-

ent areas, such as software engineering, systems and security [41].

Instead of running the program on concrete input, where a particular input component might

e.g. take the value 3, symbolic execution runs the program on symbolic input, where each in-

put component is represented by a placeholder for an initially unconstrained value. As the

program runs, symbolic execution keeps track of how program variables depend on the sym-

bolic input. When a branch point (e.g. an if statement) dependent on symbolic input is en-

countered a constraint solver is used to check which branches are feasible. Each feasible path

is then executed, making a copy (known as forking) of the current program state if necessary.

On each feasible path (at least onemust be feasible) the constraint that the branch imposed on

the symbolic input is added to a per path set called the path condition (PC). The PC records all

the symbolic branch conditions (branches that depend on symbolic input) that were traversed

by the path. The PC has two purposes. First, it is used to check feasibility when encounter-

ing later branch points on that path. Second, the constraints in the PC can be solved and a

satisfying assignment to the symbolic input can be found. This satisfying assignment can be

used to replay execution of the program along the same path that (assuming that the program

is deterministic) was symbolically executed and is effectively a test case. These automatically

generated test cases can be useful to developers because they can be added to an existing test

suite to increase code coverage or be used replay bugs.

To illustrate these ideas we now walk through a simple example of symbolic execution for the

program shown in Listing 2.1.
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Listing 2.1: A simple C program to illustrate symbolic execution.
1 int main() {
2 uint8_t x = symbolic();
3 uint8_t y = x + 1;
4 assert(y > x);
5 if (x % 2 == 0) {
6 return 0;
7 } else {
8 if (y % 2 == 0) {
9 return 1;
10 } else {
11 return 2; // Unreachable
12 }
13 }
14 }

The listing shows a simple program written in C [95] that can be symbolically executed. Fig-

ure 2.1 shows the paths that symbolic execution will enumerate for this program and the con-

straints gathered. Execution starts with a single path as shown in the figure.

Start

Success

Error

Branch

Key

Figure 2.1: Paths for program shown in Listing 2.1. Edges are labelled with the constraint
added on that branch.

First on line 2 the function symbolic() is called and it returns anunconstrained symbolic value

(we’ll use χ to represent this) that is written to the variable x. Next on line 3 the expression x +

1 is written to the variable y. The value of x is currently symbolic so y becomes symbolic too,

and stores the symbolic expression χ+ 1.
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Next on line 4 an assertion is executed. An assertion is a branch point, if the condition (y >

x) is true execution continues, otherwise execution terminates with an error. In this case the

branch condition uses symbolic data and so both paths might be feasible. On the first path

χ + 1 > χ is true and on the second path χ + 1 ≤ χ is true. This branch and the constraint

for each path are shown in Figure 2.1. A constraint solver can show that both conditions are

satisfiable. Therefore execution must fork (i.e. both paths must be followed). On the true path

χ + 1 > χ is added to its PC and on the false path χ + 1 ≤ χ is added to its PC. Execution

down the false path is an assertion failure so execution terminates. At this point a satisfying

assignment (i.e. a test case) to χ+1 ≤ χ can be requested which is the input that will cause the

assertion to fail. In this case χ = 255 will cause the assertion to fail because in C an unsigned

integer addition wraps around so 255 + 1 will result in 0.

Next execution continues to line 5 where an if statement that depends on symbolic input is

executed. For execution to continue the feasibility of the branches need to be checked. The PC

to check is the current PC conjuncted with the branch condition. The PC for the true branch is

(χ+1 ≤ χ)∧(χ mod 2 = 0) and the PC for the false branch is (χ+1 ≤ χ)∧(χ mod 2 6= 0). In

this case both branches are feasible. For the true branch the return 0 command is executed

on line 6 and execution terminates. No errors occurred along this path and a test case can be

generated (e.g. χ = 0) for it. This successful termination is illustrated in Figure 2.1 as a leaf

node in the graph that is coloured green.

For the path taking the false branch another branch is then encountered on line 8. The PC for

the true path leaving this branch point is (χ+ 1 ≤ χ) ∧ (χ mod 2 6= 0) ∧ ((χ+ 1) mod 2 = 0)

and the PC for the false path leaving this branch is (χ + 1 ≤ χ) ∧ (χ mod 2 6= 0) ∧ ((χ + 1)

mod 2 6= 0). The PC for the true path is satisfiable so execution can continue and then execute

return 1 and then successfully terminate generating another test case (e.g. χ = 1). The PC

for the false path is not satisfiable so execution does not continue down this path. This is

illustrated by the dashed edge in Figure 2.1.

Now all feasible paths have been enumerated. Three feasible paths were found, one that re-

sulted in an assertion failure and the others completed without error. For each path a test case

was automatically generated.
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2.2.1 Scalability

Despite the advantages symbolic execution seems to offer over other forms of testing it has

seen little adoption in practice. The main reason for this is that symbolic execution does not

scale well to large and/or complicated programs. There are two problems with symbolic exe-

cution that limit its scalability. First the number of paths to consider grows exponentially with

the number of branches in the program. This is often referred to as the “path explosion” prob-

lem. Second the approach is limited by the performance of the constraint solver which often

performs worse as the size/complexity of the PC grows.

The path explosion problem limits the upper bound on the number of paths that can be con-

sidered given a fixed time and space budget. Executing the exponentially growing number of

paths eats into the time budget and storing the program state for each path eats into the space

budget. To make the best use of the time budget, search heuristics are often employed [12] to

prioritize certain paths. For example priority could be given to execute paths that will cover

previously uncovered code. Tomakebest use of the space budget two approaches canbe taken.

One approach is to compress the representation of the program state to reduce wasted space

(e.g. by using copy-on-write data structures). Another approach is to use a technique called

concolic execution which by design does not store the program state for multiple paths. This

technique is discussed in detail later in §2.2.2.

The constraint solverperformanceproblem lowers theupperboundon thenumberof branches

that can be considered given a fixed time budget. Various approaches have been taken to re-

duce the severity of this problem. One approach is to simply call the solver less, KLEE [38]

caches previous queries to avoid calling the solver when possible. Concolic execution by de-

sign only calls the solver once per path rather than for every symbolic branch on that path.

Another approach is to simplify constraints given to a solver. For example KLEE splits con-

straints into independent sets and solves them separately. Another example is performing

equisatisfiable transformations to solver queries where the transformation reduces the size of

the query [150]. Another approach is to adapt a solver’s configuration to be more performant

on the kind of constraints generated by a particular symbolic execution tool. This could be as

simple as tweaking solver options, or as sophisticated as exercising fine-grained control over

the solver’s reasoning steps using a tactic interface [141] that some solvers like Z3 [140] provide.
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It should be noted that none of these techniques are a panacea to symbolic execution’s scala-

bility problems, instead they just reduce the severity.

We havementioned the concolic execution technique several times which by design addresses

some of the scalability issues of symbolic execution.

2.2.2 Concolic execution

Concolic execution is a portmanteau of Concrete and symbolic execution and is a variant of

symbolic execution. It was first pioneered by the DART [79] and the CUTE [162] tools. In

concolic execution the program is executed concretely (i.e. uses a concrete input) but with

certain inputs marked as being symbolic from a constraint collection perspective. During ex-

ecution these symbolic inputs have a concrete value but at branches involving these symbolic

inputs (and values that derive from the symbolic input) constraints are gathered as if the inputs

marked as symbolic were symbolic. At the end of program execution the PC contains all the

constraints that would have been gathered by conventional symbolic execution for that path

but without forking or calling the constraint solver (i.e. fewer resources are used). The next

step in concolic execution is to negate one of the branch conditions (and possibly drop some

of the conditions) in the PC and give this modified PC to a constraint solver. If the constraint

solver finds a satisfying assignment it can be used as a new input for the program that will

direct the program down a path, different to the previously executed path. If the constraint

solver proves themodified PC is unsatisfiable then the path represented by this modified PC is

infeasible and so a different branch condition in the PC must be negated. By repeatedly mod-

ifying the PC, solving it, and then re-running the program with the new input all the feasible

paths of a program can in theory be enumerated. This approach scales better than conven-

tional symbolic execution because it calls the solver less frequently (once per path compared

to once per branch) and consumes less space because it does not fork the execution state. It

does have some disadvantages though. Techniques to perform statemerging [105] are not pos-

sible and some path search heuristics (e.g. breadth first search) are not possible.

2.2.3 Program representation

Although the symbolic execution idea is universal to any imperative programming language

there is some degree of flexibility in how this is implemented.
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For languages that are compiled to native (i.e. binary) code (e.g. C, C++, Go) it is possible to

concolically execute the binary. Tools such as SAGE [81], angr [165], S2E [45], pysymemu [70],

Mayhem [42], and FuzzBall [128] do this. This approach has the advantage that it works on un-

modified binaries and is agnostic to the original source language. However it has the disad-

vantage of being tightly coupled to a particular platform (e.g. x86_64 Linux), making it harder

to support other platforms. This is partially mitigated by raising the binary code to an inter-

mediate representation and then symbolically executing that. For example the angr tool uses

the VEX intermediate representation (IR) that is used by the Valgrind binary analysis frame-

work.

Symbolically executing an IR (somewhere between the original source code and final binary)

is a popular approach taken by many tools. The approach is popular because using an inter-

mediate representation often avoids some of the complexities of the original source language

but also avoids some of the complexities of the platform being targeted. The degree to which

these complexities are avoided is dependent on the design of the intermediate representation.

For managed languages such as Java and C#, the byte code emitted by those languages’ com-

pilers is a form of intermediate representation that is intended to be executed by a virtual ma-

chine. This representation is decoupled from the platform details of the machine it is being

executed on and so it can be symbolically executed by implementing a virtual machine for the

byte code. Java-SPF [148] does this for Java and Pex [171] does this for C#.

Some tools also work with a compiler’s intermediate representation. For example the KLEE

tool uses the LLVM IR used by the LLVM compiler infrastructure. LLVM IR primarily exists as

a representation for performing platform independent optimisations. Being a compiler IR re-

moves some of the complexities of dealing with source language features (e.g. templates from

C++) but adds some additional complexity because some details only known at runtime are

not available (e.g. which C library and other run time libraries will be used). KLEE partially

mitigates this by providing its own runtime libraries, however these libraries might not accu-

rately reflect what will be used at runtime by the program. Given that the LLVM IR format is

not stable because it changes with every compiler release (unlike the Java and C# byte code)

this requires the source code of the program to be available, unlike tools that work at the bi-

nary level.
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Another IR that will become important later in this thesis is an IR for verification tools, an

intermediate verification language (IVL). In particular the Boogie IVLwill be used in Chapter 3

and is discussed more in §2.3.2. In Chapter 3 we develop a symbolic execution tool named

Symbooglix for the Boogie IVL and also compare it against an existing symbolic execution tool

for the Boogie IVL named Boogaloo [151].

Finally, some tools work at the program source level such as CREST [37] and EXE [40]. These

tools add instrumentation at the source code level and then the program is compiled using

the compiler normally used to compile the program. This has several disadvantages. First

it requires the source code to be available (which is not always the case) and it also means

that the implementation is tightly coupled with the programming language used by the tool

and thus it must handle all the complexities that exist there.

2.3 Static Verification

First we give an overview of static verification and then discuss weakest pre-condition gener-

ation in §2.3.1. Next in §2.3.2 we discuss an intermediate representation for verification tools,

the Boogie intermediate verification language (IVL). This IVL is the common representation

used by the tools (most of which are based on some form of static verification) we compare in

Chapter 3 and is used by the Symbooglix tool we develop in that chapter. After discussing the

Boogie IVL, in §2.3.3 we discuss the available Boogie front-ends, some of which are used in

Chapter 3 to generate benchmarks used in the comparison performed in that chapter. Finally

in §2.3.4 we discuss the available Boogie back-ends all of which are used in the comparison we

perform in Chapter 3.

Static verification is a branch of static analysis that tries to formally prove properties of pro-

grams. It has its roots in the seminal work from Hoare [89] and Floyd [74]. Floyd introduced a

method for proving programproperties using flow graphs (control flow graphs inmodern par-

lance) from which Hoare derived a deductive system (i.e. a set of inference rules and axioms).

This system could be used to derive a proof or disprove properties of programs. In particular

these properties are expressed in what is now known as a Hoare triple. A Hoare triple, writ-

ten as P{Q}R states that for a program Q if the pre-condition P holds then the post-condition

R always holds.
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2.3.1 Weakest pre-condition generation

Dijkstra [65] extended Hoare’s work by introducing the concept of weakest pre-condition (wp)

which is a predicate that relates the pre and post condition of a program such that:

∀v0, . . . , vn.P→ wp(Q,R) ⇐⇒ ∀v0, . . . , vn.P{Q}R (2.1)

That is to say if it can be proved that the pre-condition P implies the weakest pre-condition

wp(Q,R) for all possible values of the predicate variables (v0, . . . , vn) (i.e.P→ wp(Q,R) is valid)

then the Hoare triple P{Q}R always holds. The predicate variables are usually variables used

in the programQ that are needed to express the post-condition. The left hand side of equation

2.1 is known as the verification condition (VC) and is shown in equation 2.2.

∀v0, . . . , vn.P→ wp(Q,R) (2.2)

The VC can be solved manually, using an interactive theorem prover, or a constraint solver

(automated theorem prover). Modern static verification tools typically use constraint solvers

to check generated VCs. These solvers are discussed in section 2.6.

Dijkstra gave a procedure for computing the weakest-precondition of a program. Unfortu-

nately this procedure does not work well on real world programs. First, real world programs

have loops which require special treatment. Second, analysing entire real world programs can

create large and potentially complex VCs that are intractable for currently available constraint

solvers.

Loops and procedure calls require special treatment that often involves approximating their

behaviour. Over-approximation adds additional program behaviours and is therefore sound

butmay introduce false positives. Under-approximation removes existing programbehaviours

and is unsound because it may introduce false negatives. Some approximations are neither

an over-approximation nor an under-approximation. For example approximatingmachine in-

tegers with mathematical integers adds new behaviours (integers are now unbounded) and

removes some behaviours (integer overflow no longer occurs).
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One approach to approximating loops is to unroll the loop aboundednumber of times and then

insert a statement to prevent further execution of the loop. This is an under-approximation if

execution of the loop can continue after the unrolled iterations. Otherwise, it is precise. This

under-approximation can be turned into an over-approximation by replacing the statement

that prevents further execution with an over-approximating summary of the loop’s behaviour.

The most crude approximation is to allow all variables that a loop might modify to take any

value. This approximation is likely to cause false positives to be reported. This approxima-

tion can be made more precise with the use of a loop invariant. A loop invariant is a Boolean

expression that states a condition that holds every time the loop condition is evaluated (i.e. be-

fore and after every iteration of the loop body). A loop invariant can be used to summarise a

portion of the behaviour of a loop body.

An analogous approach can be used to approximate procedure calls. A procedure call can

be approximated by inlining up to a fixed recursion bound and then inserting a statement to

prevent further recursive calls. This is an under-approximation if execution of the procedure

call can occur past the recursion bound. Otherwise, it is precise. This approximation can be

turned into an over-approximation by replacing the statement that prevents further recursive

calls by a summary of the procedure’s behaviour.

To handle real world programs the size and complexity of the VC may need to be reduced to

become tractable. Dijkstra’s procedure createsVCs that grow exponentially with program size.

However Flanagan and Saxe [73] developed an approach forVCgenerationwhere the size of the

VC grows quadratically in program size in theworst case. Although this approach to reduce the

size of the VC is helpful it might not be enough to make generated VCs tractable. The only

available solution to this is to introduce some approximations at the expense of soundness

and/or completeness. One way to apply this is at the function level, which allows verification

to be performed in a modular fashion. Each function must be annotated with a summary of

its behaviour (i.e. what global variables it might modify and what its pre and post conditions

are). Then each function can be analysed separately and calls to other functions can be ap-

proximated with their summaries. If all functions are proven correct (i.e. the implementation

conforms to the summary) then the entire program is correct. Typically these pre and post

conditions cannot be automatically inferred and so must be provided by a developer. There

are many other approaches to approximation that are out of scope for this discussion.
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So far we have discussed static verification through the lens of weakest pre-condition gener-

ation. However it is worth noting that other important static verification techniques such as

model checking and abstract interpretation exist.

Model checking explores the states of the program and checks that after some number of ex-

ecution steps one or more properties hold. Bounded model checking is a variant of model

checking that employs the loop andprocedure approximationmethods previously to discussed

to provide a guarantees of correctness up to a finite bound.

Abstract interpretation [58] formalises thenotionof executing aprogramwith approximations.

Further discussion of these techniques is out of scope, but D’Silva et al. provide an excellent

survey of model checking and other verification techniques [60].

2.3.2 The Boogie IVL

An intermediate verification language (IVL) simplifies the task of building a program analy-

sis tool, by decoupling the handling of the semantics of a real world programming language

from the method that is used to assess the correctness of programs. Much like a compiler, a

program analysis tool can have a front-end and a back-end, linked by a common intermedi-

ate representation of the input program. The front-end translates the input program from a

programming language (e.g. C) into the IVL; the back-end then analyses the IVL program. A

single IVL back-end can thus act as an analyser for multiple high-level languages if the front-

ends are available. Example IVLs include The Boogie IVL [116] (subsequently abbreviated to

Boogie when it is clear what is meant from the context), WhyML [71] and the IVL proposed by

Le et al. [110].

Boogie is a small and simple IVL with a clearly-defined semantics, in contrast to the seman-

tics of real-world programming languages that are usually prone to a degree of ambiguity. A

front-end targeting Boogie commits to a specific encoding of the source language, after which

program analysis is performed with respect to the precise semantics of Boogie. Resolution of

source language ambiguity is controlled explicitly by the front-end, and does not taint the un-

derlying program analysis techniques. Boogie has several front-end and back-ends which are

discussed in§2.3.3 and §2.3.4 respectively.
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Boogiehas traditionally beenused forprogramverification, via theBoogie verifierback-end [15],

but recently the IVL has also been used for bug-finding (e.g. Boogaloo [151] and Corral [108]).

Corral recently replaced the SLAM tool [13] as the engine that powers Microsoft’s Static Driver

Verifier [107].

We illustrate some of the core features of Boogie using an example C program in Listing 2.2.

Listing 2.2: An example C program performing checked division.
1 bool err;
2
3 int checked_div(int a, int b) {
4 // POST: (err && b == 0) || (!err && \result == a/b)
5 err = false;
6 if (b == 0) {
7 err = true;
8 return a;
9 }
10 return a / b;
11 }
12
13 void test_div(int a, int b) {
14 // PRE: a != 0 && b != 0
15 assert(checked_div(a * b, a * b) == 1);
16 assert(!err);
17 }

In Listing 2.2 the function checked_div takes two ints a and b and returns the result of divid-

ing a by b unless b is zero, in which case a is returned and a global err flag is set. The function

contains a post-condition (as comments) on line 4 that summarises the behaviour of the func-

tion. The function test_div checks that dividing a*bby a*b (by calling checked_divon line 15)

yields the value 1 and on the next line it is asserted that the error flag is not set. The func-

tion contains a pre-condition (as comments) on line 14 that the function should be assumed to

only be called with non-zero arguments.

Listing 2.3: An example Boogie program performing checked division that is a potential trans-
lation of the C program in Listing 2.2.

1 var err: bool;
2 function MUL(int, int): int;
3 axiom (forall a, b: int :: (a != 0 && b != 0 ==> MUL(a, b) != 0));
4 procedure checked_div(a: int, b: int) returns (r:int)
5 ensures (err && b == 0) || (!err && r == a div b); {
6 err := false;
7 goto l_then, l_end;
8 l_then:
9 assume b == 0;
10 err := true; r := a; return;
11 l_end:
12 assume b != 0;
13 r := a div b;
14 }
15 procedure test_div(a: int, b: int) returns (r:int)
16 requires a != 0 && b != 0; {
17 call r := checked_div(MUL(a, b), MUL(a, b));
18 assert r == 1;
19 assert !err;
20 }
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In Listing 2.3 a possible translation of the C program to Boogie is shown. The checked_div and

test_div procedures correspond to the C functions of the same name in the corresponding

C program.

Instead of employing integer multiplication directly, multiplication is modelled using an un-

interpreted function MUL : (int × int) → int (line 2). An axiom constrains MUL to satisfy the

integral domain property of integer multiplication: if a and b are non-zero then a · b is non-

zero (line 3). This abstraction captures exactly the property of multiplication needed to verify

this example, avoiding potentially expensive reasoning about non-linear multiplication.

Procedure checked_div stores its result in an explicit return variable, r (line 4), and the post-

condition (ensures) andpre-condition (requires) forchecked_div andtest_div are formalised

(lines 5 and 16, respectively). The body of checked_div uses a non-deterministic goto state-

ment (line 7) and two assume statements (lines 9 and 12) to model an if statement. Control

may transfer non-deterministically to either one of the l_then and l_end labels targeted by

the goto. An assume e statement blocks further program execution (in a non-erroneous man-

ner) if the guard e does not hold. Thus for any concrete value of b, exactly one of the assume

statements at lines 9 and 12 will cause execution to block.

The example illustrates semantic choice when translating from a language such as C into an

IVL. The Boogie int data type represents the infinite set of mathematical integers, while the

C int data type represents a finite set of values. In the translation of Listing 2.2 to Listing 2.3

we have ignored the possibility of overflow, pretending that the C int represents mathemat-

ical integers. With this encoding, the Boogie program of Listing 2.3 is deemed correct by the

Boogie verifier [15]: the post-condition of checked_div holds for all inputs, and the assertions

of test_div hold under the assumption of the precondition and the axiom constraining the

behaviour of MUL. In contrast, the C program of Listing 2.2 is not correct for all inputs, due to

arithmetic overflow (which is undefined for signed integers in C).
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Listing 2.4: An example Boogie program performing checked division that is a potential trans-
lation of the C program in Listing 2.2. It is similar to Listing 2.3 but models the C int type as a
32 bit wide bit-vector rather than using mathematical integers.

1 var err: bool;
2 function {:bvbuiltin "bvmul"} MUL(bv32, bv32): bv32;
3 function {:bvbuiltin "bvsdiv"} SDIV(bv32, bv32): bv32;
4 procedure checked_div(a: bv32, b: bv32) returns (r:bv32)
5 ensures (err && b == 0bv32) || (!err && r == SDIV(a, b)); {
6 err := false;
7 goto l_then, l_end;
8 l_then:
9 assume b == 0bv32;
10 err := true; r := a; return;
11 l_end:
12 assume b != 0bv32;
13 r := SDIV(a, b);
14 }
15 procedure test_div(a: bv32, b: bv32) returns (r:bv32)
16 requires a != 0bv32 && b != 0bv32; {
17 call r := checked_div(MUL(a, b), MUL(a, b));
18 assert r == 1bv32;
19 assert !err;
20 }

In Listing 2.4 an alternative translation of Listing 2.2 is shown. In this translation the intCdata

type is modelled using Boogie’s 32-bit bit-vector type (bv32). In this program multiplication

is modelled using a function declared on line 2. The function declaration has a bvbuiltin

attributewhichmeans the function is not uninterpreted and is instead given the interpretation

specified in the attribute. Here MUL is interpreted as the bvmul function defined by SMT-LIBv2

(see §2.6). Similarly, the SDIV function is declared on line 3 tomodel division with signed two’s

complement operands by using the sdiv function defined by SMT-LIBv2.

The Boogie program in Listing 2.4 is not correct. The assert on line 18 can fail. If MUL(a, b)

is equal to 0 then checked_div returns 0, but the assert asserts that it returns 1. MUL(a, b)

can return 0 is overflow occurs, for example if a and b are both 0x80000000. Given that the

original C program was incorrect due to overflow this shows that Listing 2.4 is a more precise

translation.

We now discuss some further Boogie features not illustrated by the above examples that we

shall refer to later in Chapter 3.

The havoc command accepts a sequence of variable names and sets each variable to a non-

deterministic value. This allows abstract modelling of side effects, e.g. reading a value from

the network with no knowledge of what that value might be.
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Specification-only procedures abstractly describe the behaviours of procedures for which no

implementation is available (i.e. no body), via a contract: a pre- and post-condition, and a

modifies set specifying which global variables might be updated by the procedure. Calling a

specification-only procedure involves asserting the pre-condition, havocking the variables in

the modifies set, and assuming the post-condition. The modified variables thus take arbitrary

values satisfying the post-condition of the contract.

Maps allow modelling of array and heap data. For types S and T , the type [S]T represents a

total map from S to T . If type S has an infinite number of distinct values (e.g. if S = Z) then a

map of type [S]T has an infinite number of keys.

Global constants can be declared, and axioms used to restrict their values. The unique qual-

ifier specifies that a global constant of type T should have a distinct value from any other

unique-qualified global constant of type T .

Functions are mathematical functions and so are stateless. This makes them distinct from

procedures which can have state. If the function has no body then it is treated as an unin-

terpreted function (i.e. nothing is assumed about the function other than that it must always

give the same output when given the same input arguments). If the function has a body it is a

single expression describing the result computed by the function in terms of its arguments.

Old expressions are expressions in Boogie that contain use of the built-in old() function. It

represents the value of an expression at the entry point of a procedure. This can be used to

compare the old and new value of expressions in the ensures clause when leaving the pro-

cedure. The value of these expressions can be different because the expression can refer to

global variables which might be modified by the procedure.

FormorediscussionofBoogie see [116] andhttps://boogie-docs.readthedocs.io/en/latest/.

2.3.3 Boogie front-ends

Several front-ends for variousprogramming languageshavebeendeveloped includingC (SMACK [156]

and VCC [51]), Java (Joogie [7]), C# (BoogieBCT [23]), Dafny [115] and OpenCL/CUDA (GPUVer-

ify [26]).
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The SMACKandGPUVerify front-ends are of particular interest because they are used to create

the benchmark suite used to compare various Boogie back-ends in Chapter 3.

Both tools are built on top of the LLVM compiler infrastructure, more specifically they use

Clang [47] to compile existing source code to LLVM IR which is then converted to Boogie. De-

spite this similarity the tools are very different to eachother. SMACK targets Cprograms (single

threaded or concurrent) and (at the time the work in Chapter 3 was performed) models inte-

gers as mathematical integers . SMACK is designed to check general properties of C programs

such as no assertion failures and freedom from signed integer overflow.

The GPUVerify front-end on the other hand, targets GPU kernels and models integers as bit-

vectors. It is designed primarily to verify freedom from two classes of defects in GPUprogram-

ming: data races and barrier divergence. A parallel kernel is translated into a sequential Boo-

gie program, instrumented with assertions that check whether it is possible for two arbitrary

but distinct threads to race or diverge on a barrier. It can also check user provided assertions.

2.3.4 Boogie back-ends

In Chapter 3 we perform an evaluation of various Boogie back-ends. We now briefly survey

these back-ends. All these back-ends use Z3 as their constraint solver.

The Boogie verifier [15] applies weakest precondition generation methods as discussed in

§2.3.1 to transform each procedure in a Boogie program into a VC to be checked by a con-

straint solver. The Boogie verifier uses loop cutting [16] to over-approximate loops in a sound

manner. Procedure calls are soundly approximated by using pre and post conditions on pro-

cedures. Neither loop invariants nor pre and post conditions are inferred automatically. The

lack of these often lead to false positives being reported, which makes the tool difficult to be

used practically for bug finding, however being a sound tool, it will never report false nega-

tives. The Boogie verifier supports all features of the Boogie IVL.

Boogaloo [151] is a symbolic execution tool (see §2.2) for Boogie programs that aims to provide

a way of debugging failed verification attempts. Boogaloo incorporates several interesting fea-

tures.
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Boogaloo treats maps as having a finite domain, even if in Boogie’s semantics they have an

infinite domain. Boogaloo does this by representing every map access by a fresh variable.

This approach is sound and is necessary because a map of infinite size cannot be instantiated

on any real computer because would require an infinite amount of storage.

Boogaloo has a feature which the authors refer to as “concretization”. This feature tries to

workaround the problem of the set of path constraints growing too large. It does this by pe-

riodically asking its underlying constraint solver to pick concrete values for all symbolic vari-

ables (including maps), replaces the values of the variables in the program state with the con-

crete values, and then makes the path constraint set the empty set. This is unsound (i.e. may

report false negatives), but will not introduce false positives. This is because “concretization”

may cause feasible paths to be missed, but will not add additional paths. In this sense it is an

under-approximation. This feature can be partially disabled by the user if needed, so that it

only happens when execution of a path terminates. The user can also request that multiple so-

lutions at the time of “concretization” are tried.

Boogaloo also tries to avoid giving quantified constraints to its underlying constraint solver. It

does this because constraint solvers often exhibit poor performance on quantified constraints.

When encountering a quantified constraint Boogaloo forks execution, one path assuming the

quantified constraint be true, and on the other path assuming it to be false (i.e. the negated

form of the quantified expression). This forking is necessary to decide what form of the con-

straint to add to the path constraints. Before adding the quantified constraint to the set of path

constraints it is “Skolemized” which eliminates existential quantifiers by adding fresh vari-

ables. This approach eliminates all existential quantifiers (leaving only universal quantifiers

in constraints) and is sound.

Boogaloo also has an unsound feature called “finitization” which eliminates any remaining

universally quantified constraints. It does this during prior to “concretization”, by instantiat-

ing the universally quantified expressions, and removing the universally quantified expression

from the constraint set. For example the constraint ∀a : f(a), where a is of Boolean type can be

instantiated soundly as f(true) ∧ f(false). However Boogaloo doesn’t instantiate quantifiers

like this. Its strategy is to ignore all quantifiers that don’t perform assignments to maps. For

universally quantified constraints that do assign to maps they are instantiated for all map lo-

cations previously accessed. This unsound feature is based on the authors’ observation that

universally quantified constraints are frequently used to to write axioms over maps.
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Finally Boogaloo has a “minimization” feature that tries to simplify generated test cases by per-

forming a binary search to try to find small values for symbolic variables. The rationale behind

this is that the authors believe test cases involving small numbers are more comprehensible.

Boogaloo does not provide complete coverage of the Boogie language because it lacks support

for bit-vector types. The tool does not (modulo implementation bugs) report false positives.

Corral [108] is a whole-program analyser built on top of the Boogie verifier. Corral first trans-

forms every loop into a tail-recursive procedure call, then uses Houdini [72] to infer (possibly

trivial) pre/post specifications for all procedures. Starting at a given program entry point, Cor-

ral employs a technique called stratified inlining. Procedures are inlined up to a specific depth,

after which two verification conditions (see §2.3.1), A and B are checked: in A, non-inlined

procedures are over-approximated using pre and post conditions on procedures. In B, non-

inlined procedures are under-approximated via an assume false command. Unsatisfiability of

condition A implies that the program is correct, while satisfiability of condition B exposes a

bug that can manifest within the inlining depth. Otherwise, analysis of the solution toA iden-

tifies a non-inlined procedurewhose effectmay trigger a bug; this procedure is inlined and the

process repeats. Analysis bails out when a maximum inlining depth is reached. The depth-

bounded nature of the procedure is reminiscent of boundedmodel checking techniques. This

nature alsomeans that the tool can only report a program as correct when the program can no

longer be inlined further and the depth bound has not been reached. Corral does not (modulo

implementation bugs) report false positives. Corral supports all of the Boogie language due to

it being built on top of the Boogie verifier which has full support.

Duality [130] employs Craig interpolation to compute inductive invariants at program points,

generalising the Impact algorithm [129]. The goal is to use these invariants to prove software

correctness, though bugs may be identified during invariant search. As with Corral, loops are

first transformed into tail-recursive calls. An iterative process is then used to search for bugs

up to a given inlining depth. Each time a recursion point is reached, if no bugs are detected

then Duality extracts an interpolant from the unsatisfiability proof of the current verification

condition, generalising the program state on entry to the recursive procedure. If the states

represented by this interpolant are contained inside the states represented by previously com-

puted interpolants for the procedure, Duality concludes that no bugs can arise via further ex-
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ploration of the procedure’s execution. Duality is sound and does not (modulo implementation

bugs) report false positives. Duality is actually built on top of components of the Corral tool,

however its current implementation does not support bit-vectors.

GPUVerify [26] has already been discussed in terms of its front-end but it also has a sophisti-

cated back-end that is built on top of the Boogie verifier. The GPUVerify back-end is only de-

signed to verify Boogie programs generated by its front-end and thus is not a general purpose

Boogie back-end. Most GPU kernels contain loops but the Boogie verifier provides virtually no

built-in facility for automatically inferring loop invariants. GPUVerify attempts to automat-

ically infer invariants by using GPU kernel specific heuristics to guess candidate invariants,

and then by applying the Houdini algorithm [72] to compute the largest subset of guessed can-

didates that actually forms an inductive invariant. These inductive loop invariants are then

added to the Boogie program and it is given to the Boogie verifier. The need for loop invariants

means that GPUVerify may report false positives, however the back-end is sound. The GPU-

Verify back-end supports bit-vectors.

2.4 Fuzzing

Fuzzing is a simple but powerful technique for testing software. The basic idea is to generate

random inputs and give them to a program in the hope of eliciting some kind of property vio-

lation (e.g. crash).

The origin of the term fuzzing can be attributed to Miller [135] who observed that noise on his

dial-up connection was causing random input to be sent to his remote terminal and triggering

crashes in some of the programs he was using. He wasn’t expecting well used utilities to crash

so easily, so he set his students a project to fuzz well known UNIX utilities. The project suc-

cessfully found inputs that crashed 25-33% of the UNIX utilities they examined.

This class of fuzzing is random fuzzing. It is also referred to as blackbox fuzzing because inputs

are generatedwithout using any knowledge about the programunder test. This formof fuzzing

is very convenient to use but it is unlikely to find deep bugs. The program shown in Listing 2.5

is shown to illustrate this.
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Listing 2.5: A simple C program to illustrate the limitations of random fuzzing.
1 int main() {
2 char* x = input(/*size=*/6);
3 if (x[0] == 'H') {
4 if (x[1] == 'E') {
5 if (x[2] == 'L') {
6 if (x[3] == 'L') {
7 if (x[4] == 'O') {
8 if (x[5] == '\0') {
9 abort();
10 }
11 }
12 }
13 }
14 }
15 }
16 return 0;
17 }

On line 2 a random input of 6 bytes is requested. This is then followed by a series of nested if

statements. If all the conditions are true then abort() is called on line 9. A random fuzzer is

very unlikely to guess that the input required to reach line 9 is the NULL terminated "HELLO"

string because there are 248 different possible bit patterns. Assuming the fuzzer uses a uniform

probability distribution the probability of choosing at random the abort-triggering input is

1
248

. Given this, it can be shown (§A.1) that the expected number of tries on average (i.e. the

expectation value) required to guess the abort-triggering input is 248.

For a fuzzer to make more progress on a program like this it can’t treat the program under

test as a black box. Instead it must use information about the program to guide the search for

interesting inputs.

One such class of fuzzers are mutation-based fuzzers. Mutation-based fuzzers start with a set

of existing inputs (knowas a corpus) and randomlymutate these inputs to try tofindnew inputs

that cause interesting program behaviour. An example mutation is performing “crossover”,

where multiple inputs are combined into one. By providing the fuzzer with a set of known

valid inputswe are giving it information onwhat kind of inputs the programunder test expects.

We can give the fuzzer even more information by providing it with information on what code

in the programwas covered by a particular input, thus indirectly communicating the structure

of the program under test. This is known as coverage-guided fuzzing. Whenever a new input

covers a newpiece of code (e.g. a statement or branch), this can be used as an indicator that the

input is an interesting input to be added to the corpus and mutated further. This approach is

muchmore likely to find the right input tomake the program in Listing 2.5 reach line 9. In this

example the fuzzer only needs to guess that first byte needs to be 'H' (it does not matter what
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the value of the other bytes are) to receive feedback that a new branchwas covered. When this

happens the input that starts with 'H' is added to the corpus. Now when the fuzzer mutates

this new input it only needs to guess that the first byte should be left untouched and that the

second byte needs to be 'E' (the value of subsequent bytes does not matter). This process

will repeat until the abort-triggering input is found to reach line 9. Assuming only one byte

mutation is applied for each mutation, the probability of performing a mutation that covers

a new branch in this example is 1
6 ×

1
256 . Given this, it can be shown (§A.2) that the expected

number of mutations (i.e. the expectation value) required until the abort-triggering input is

found is 9216. This is significantly less than the 248 expected number of attempts required by

random fuzzing.

This approach is essentially an evolutionary algorithm [64] where an input is considered fit if it

covers new code. An evolutionary algorithm used in this context is part of a broader research

area known as search-based test case generation [5].

Twowell knowncoverage-guidedmutation-based fuzzers areAFL [1] andLibFuzzer [119]. Both

tools have found bugs in real world software [2, 120].

It is worth noting that fuzzers and concolic execution tools have similarities. Both repeatedly

re-run a program with different inputs. A mutation-based fuzzer randomly mutates inputs

(with guidance in the case of coverage-guided fuzzers) whereas concolic execution mutates

gathered constraints and relies on a constraint solver to generate a new input from themutated

constraints. This similarity has not gone unnoticed and several tools [125, 168, 146, 42, 145]

have been developed that are a hybrid of fuzzing and concolic execution.

Another class of fuzzers are grammar-based fuzzers. If the developer’s goal is to test parsing

of the input then applying random mutations is a good approach because it will generate lots

of invalid inputs which the parser must recognise. However if the goal is to test components

of a program that handle valid input (i.e. after parsing) then using randommutations is a bad

approach because most inputs will not be valid and so execution will rarely make it through to

the parser which is the code that we wish to test. This is where grammar based fuzzers come

in. Grammar based fuzzers are aware of the structured nature of the inputs and restrict them-

selves to randomly generating “valid” inputs. CSmith [175] is a well known grammar-based

fuzzer that randomly generates syntactically valid and semantically defined (i.e. no undefined

behaviour is used) C99 programs. It has been used to find compiler crashes and correctness
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bugs. Another notable example is LangFuzz [90] which is distinct from CSmith in that it aims

to be language agnostic. It takes a grammar and is able to by-pass the need for language spe-

cific semantic rules by learning from a set of existing programs and mutating them.

2.5 Floating-point arithmetic

In this section we discuss floating-point arithmetic. This is relevant to Chapter 4, where we ex-

tend a symbolic execution tool to reason about floating-point programs, and Chapter 5, where

we build a floating-point constraint solver.

First we give an overview a floating-point arithmetic. Then we discuss the IEEE-754 standard

for floating-point arithmetic (§2.5.1). This is followed by a discussion of rounding modes and

floating-point exceptions (§2.5.2). Finally we discuss notable work on the analysis of floating-

point programs (§2.5.3).

For various problem domains (e.g. scientific computing) it is necessary to manipulate real val-

ued quantities in programs. The set of real numbers is infinite and some values (e.g. irrational

numbers) cannot be represented exactly with finite precision. Given that computers have a

finite amount of storage space it is necessary to use a representation that approximates real

numbers. This representation can either be fixed point or floating-point. In a fixed point rep-

resentation the radix point1 is at a fixed position whichmeans the available precision (number

of digits after the radix) is constant. In a floating-point representation the radix point is not at

a fixed position and so the available precision depends on the magnitude of the real number

being represented.

A fixed-point representation is useful if a fixed amount of precision is desired and the range

required is small (e.g. [−1.0, 1.0]). However this representation is not suitable if the range re-

quired is large and so a floating-point representation must be used in this scenario.

In general, floating-point number representations provide finite approximations to the real

numbers, trading range and precision for storage space. They utilize scientific notation of the

form (−1)s ×m × be where s is either 1 or 0 and controls the sign, m is a real number called

the significand (typically in the range [0, b)), b is an integer base (typically 10 or 2), and e is an

1in base 10 this is called the decimal point
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integer exponent. For example −0.75 can be written as −1.5 × 2−1. By using a fixed number

of digits for the exponent and significand, floating-point number representations restrict the

range and precision, respectively, of representable numbers.

There have been several different floating-point representations implemented over the years

but the most popular representation is the one described by the IEEE-754 2008 standard [91]

(also known as IEC 60559:2011 [93]).

In this thesis when considering the correctness of programs that use floating-point arithmetic,

we will be concerned with C programs. If an implementation of C respects Annex F of the C

language specification [95], then most of its floating-point types and operations are IEEE-754

compliant (some exceptions to this are detailed below).

2.5.1 IEEE-754 floating-point on x86_64.

We provide details of IEEE floating-point representation implemented by the x86_64 family of

processors.

Table 2.2: x86_64 floating-point types.

Name Size p emax leading bitm explicit?
fp16 16 bit 11 15 No
fp32 32 bit 24 127 No
fp64 64 bit 53 1023 No
x86_fp80 80 bit 64 16383 Yes

Four primitivefloating-point types are available on this target: 16-bitwidehalf precision, 32-bit

wide single precision (IEEE-754 binary32), 64-bit wide double precision (IEEE-754 binary64),

and 80-bit wide double extended precision (not an IEEE-754 basic format). We refer to these

types as fp16, fp32, fp64, and x86_fp80 respectively. For the fp16 type only conversion opera-

tions are supported on x86_64.

Each type has a precision p (number of bits representing the significand), andmaximumexpo-

nent value emax. A full list can be found in Table 2.2. The last column (“leading bitm explicit?”)

states whether the binary encoding of the type contains the leading bit (i.e. the integer portion

of)m, or if it is inferred from the remaining bits.
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In an Annex F-compliant implementation of C on x86_64, fp32 and fp64 are the float and

double types respectively. The C standard with Annex F only weakly specifies how the long

double type should be implemented. The typemust be able to represent all values that double

can represent. All C implementations that target x86_64 thatwe are aware of treat long double

as x86_fp80.

The IEEE-754 binary format contains several classes of data: normal, denormal, zero, infinity

and NaN. Most floating-point numbers belong to the normal class which provides a unique

encoding for representablenumberswhere the leadingbit of the significand is always 1 and the

exponent is in the range [−emax+1, emax]. The denormal class represents numbers close to zero

and exists to provide a smoother transition from the smallest positive normal (largest negative

normal) number to positive (negative) zero. Denormal numbers always have the exponent and

leading bit of the significand set to−emax and 0 respectively. The zero class contains two values,

positive and negative zero. The infinity class contains positive and negative infinity. These four

classes allow every real number to be approximated.

The NaN class represents “not a number”. NaN values arise from invalid computations, such

as 0.0/0.0. NaNs are not comparable: with the exception of the != operator, comparing NaN

with any value yields false. There are many different binary encodings for NaN but IEEE-754

only distinguishes between two types: quiet and signaling. The difference between these only

matter when considering IEEE-754 exceptions which are discussed later.

In the binary encoding of the above classes the exponent is encoded in excess-emax encoding

(e.g. excess-127 for fp32). If the encoded exponent are all zeros the number is either the zero

class (significand is zero) or the subnormal class. If the encoded exponent are all ones the

number is either infinity (fractional significandbits are all zero) orNaN.Otherwise thenumber

is normal.

The binary encoding used by IEEE-754 types is that the integer portion of the significand (1-bit)

can be inferred for the normal and subnormal classes. Accordingly, this bit is not stored in

the binary encoding and its value is implicit. For example, for the fp32 type, p = 24 but the

significand only occupies 23 bits in memory.

The x86_fp80 type is not an IEEE-754 binary format. It consists of 1-bit sign, 15-bit exponent

and 64-bit significand. The binary encoding is similar to that of the IEEE-754 binary format

except that the integer portion of the significand is stored explicitly. This additional bit per-
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mits extra classes known as pseudo-NaN, pseudo-infinity, unnormal and pseudo-denormal.

Modern Intel® processors consider all these classes apart from pseudo-denormals as invalid

operands [92]. Pseudo-denormals are treated as denormals so that legacy software can be sup-

ported.

2.5.2 Rounding modes and exceptions.

When evaluating operations, rounding may need to be performed due to the finite precision

available. In IEEE-754, addition, subtraction, multiplication, division and sqrt() are cor-

rectly rounded (i.e. the result is as if the result was computed with infinite precision and an

unbounded exponent and then rounded). IEEE-754 provides five different rounding modes:

round toward positive (RTP), round toward negative (RTN), round toward zero (RTZ), round

to nearest ties to even (RNE), and round to nearest ties away from zero (RNA). The default

roundingmode is usually RNE. In C the roundingmode is part of a program’s thread-local state

and can be modified via a standard library call. The C standard library provides the <fenv.h>

header than can be used to get and set all of the above roundingmodes apart from RNA. IEEE-

754 also defines several different exceptions (invalid operation, division by zero, overflow, un-

derflow and inexact) that can be raised when operations are performed. The default handling

of these is to set one or more status flags and then continue execution. Most operations when

given a signaling NaN as an operand will raise an invalid operation exception but will not raise

that exception if all NaN operands are quiet NaNs. The C library provides the <fenv.h> header

which contains functions for checking and setting the status flags.

2.5.3 Analysis of floating-point programs

The analysis of floating-point programshas received a significant amount of attention from the

research community. This work will become relevant in Chapter 4, where we extend a sym-

bolic execution tool to support floating-point programs. Although floating-point constraint

solvers are a commoncomponent in theworkwediscusshere,wedon’t discuss solvingfloating-

point constraints here and instead defer that discussion to §2.6.2.

Test case generation for floating-point programs has been investigated using a wide variety

of techniques. One of the earliest works is that of Miller et al. [174] in 1976. In this work

they propose collecting path constraints from a program, transforming those path constraints
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into a mathematical optimisation problem and then solving it. If a solution is found then that

is a test case for the program, if a solution is not found then the feasibility of the path corre-

sponding to the path constraints is inconclusive. Recently Fu et al. [76] developed a symbolic

execution tool that used this approach of reformulating floating-point constraints as a math-

ematical optimisation problem via their constraint solver XSat [77]. The symbolic execution

tools, Pex [171] (via FloPSy [106]) and SPF [148] (via Coral [167, 31]) have taken a similar ap-

proach by using a solver that reformulates floating-point constraints as a search problem that

is solved usingmeta-heuristic searchmethods. The FPSE [32, 11] symbolic execution tool uses

an interval solver over real arithmetic combinedwith project functions tomodel floating-point

arithmetic. Quan et al. [154] take a different approach to symbolically executing floating-point

programs. They symbolically execute a software implementation of IEEE-754 floating-point

arithmetic as part of the program under analysis. This avoids requiring a floating-point con-

straint solver because all constraints are over bit-vectors.

Earl et al. [18] take a very different approach to test case generation while still using symbolic

execution. Their tool Ariadne is designed to generate test cases that trigger floating-point ex-

ceptions. During symbolic execution they approximate floating-point arithmetic using real

arithmetic (using Z3 to check the constraints) and inject checks for floating-point exceptions

after every floating-point operation. If they find a real number that triggers an exception, they

then perform a local search for floating-point numbers in the neighbourhood of the real num-

ber and then natively replay (i.e. using IEEE-754 floating-point arithmetic) these candidate test

cases to try to find a genuine test case. This step of performing native replay is a refinement

step to filter out false positives.

Another test case generator worth mentioning is FPGen [3]. This test case generator was used

to test an FPU (floating-point arithmetic unit). The generator isn’t really designed to test full

programs and instead is used to test the execution of one or more floating-point operations

along with a set of a constraints. This tool generates random inputs using a portfolio of differ-

ent constraint solvers.

Bounded model checking has also been applied to test case generation. Collavizza et al. [52]

use bounded model checking combined with their FPCS [133] solver (an interval solver which

appears to be the same as the one used by FPSE) to look for program inputs that can cause pro-

gram outputs to exceed a user defined error tolerance. The boundedmodel checker CBMC [50]

supports test case generation for ANSI C programs. The tool solves floating-point constraints
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by converting floating-point operations into operations over bit-vectors (i.e. modelling the op-

eration of an FPU) and then uses bit-blasting [104] to convert the constraints into a SAT prob-

lem, which is then solved using a SAT solver [35]. Note however due the size of the SAT formula

that would be generated by the above approach, a mixture of over and approximations are in-

troduced during the translation. Satisfying assignments or proofs of unsatisfiability are then

used to refine the approximations if necessary. This is essentially a form of counterexample-

guided abstraction refinement (CEGAR) [49].

Symbolic execution for the purposes of cross-checking floating-point programs has also been

investigated. Collingbourne et al. [54] check the output equivalence of two floating-point pro-

grams by symbolically executing (speculatively executing paths) both programs and checking

using syntactic rewrite rules that the expressions representing the program outputs are equiv-

alent. The authors argue that floating-point expressions are only reliably equivalent if they

consist of the same floating-point operations, and use this to justify their approach. This ap-

proach completely bypasses the need for a floating-point constraint solver, but is prone to false

positives and cannot generate test cases.

Static verification of floating-point programs has also been investigated. Boldo et al. [28, 29]

implement a tool that generates verification conditions from annotated C programs which are

then solved using a formalisation [61] of the IEEE-754 standard in the Coq proof assistant [57].

The static analyser Astrée [27] based on abstract interpretation, uses an abstract domain over

floating-point intervals to verify C programs. Putot et al. [153] also use abstract interpretation

to study the propagation of rounding errors.

Some work has looked at branch instability. This is where the condition of a branch that de-

pends on floating-point data is susceptible to change when small changes to the floating-point

data, or compiler optimisations are applied. Gu et al. [85] define a procedure that, given a pro-

gram, determines an input thatmay lead to different branch conditions depending on how the

program was compiled. Lee et al. [111] propose a dynamic analysis to detect branch instabil-

ity at run time. The approach instruments a program by replacing floating-point operations

with vectorized floating-point operations where the lanes of the vector represent estimated

upper and lower bounds of the result. As computation proceeds, these bounds are updated,

and when a branch that uses the floating-point vector is reached, additional instrumentation

checks if the error bounds allow for a branch divergence.
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Compiler optimisations can have a huge impact on the behaviour of floating-point programs,

especially if they are wrong! Lopes et al. [124] implemented a tool (Alive) that formally veri-

fies peephole optimisations in the LLVM compiler. Both Menendez et al. [131] and Nötzli et

al. [144], independently extended this tool to support verifying floating-point peephole opti-

misations. Both research groups found bugs in the way LLVM’s floating-point peephole opti-

misations work, which were subsequently fixed.

Researchers have also looked at the problem of checking a floating-point program’s accuracy.

Ramachandran et al. [157] use symbolic execution via the SPF tool and their floating-point

solver, REALIZER [113], to check the accuracy of programs by symbolically checking that a

program’s output is within the required error bounds. Panchekha et al. [147] describe their

tool (Herbie) that performs a heuristic-based search to find replacements for floating-point

expressions in programs that have improved accuracy.

Finally, researchers have also looked at the problem of precision tuning. Precision tuning is

the process of increasing or decreasing the precision of floating-point operations (e.g. replace

use of doublewith float in a C program) in a program to increase performance but at the same

time maintain the required level of precision. González et al. [158, 159] demonstrate tools

that modify programs at the LLVM IR level to use different floating-point precisions and then

perform a guided search over the space of possible programs. Chiang et al. [44] present their

tool (FPTuner) which generates mixed precision floating-point expressions from real valued

expressions using an error threshold. This is useful for programmers that do not have floating-

point expertise that wish to approximate some algorithm that assumes real arithmetic.

2.6 Constraint solvers

Constraint solvers are at the heart of many program analysis techniques mentioned earlier

(e.g. symbolic execution and static verification). Themain goal of a constraint solver is to prove

whether or not a set of constraints are satisfiable.

2.6.1 SAT and SMT solvers

The simplest type of constraints that can be solved are Boolean constraints. Boolean con-

straints consist of one or more Boolean free variables joined by Boolean operators (e.g. ∧, ∨).
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Proving satisfiability or unsatisfiability of Boolean constraints (also known as SAT) is a well

known problem and was the first problem to be shown as NP-complete [56]. Solving this prob-

lem has a wide array of applications (e.g. hardware verification) and so a significant effort has

been invested in finding efficient ways to solve it. The algorithm underlying most SAT solvers

is the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [62] which stemmed from the ear-

lier work of Davis and Putnam [63]. Many further advancements (e.g. conflict driven clause

learning [166]) coupled with annually held competitions 2 have lead to the creation of high

performance SAT solvers capable of handling millions of free variables. Example solvers in-

clude minisat [66], Chaff [139].

Of course Boolean constraints are not the only type of constraints that are useful to solve. In

program analysis it can be useful to reason over additional types such asmachine integers (bit-

vectors), floating-point types, mathematical integers and real numbers. It can also be useful to

reason using higher order concepts like uninterpreted functions and quantifiers. Constraint

solvers tackling these kinds of constraints are known as satisfiability modulo theories (SMT)

solvers. These solvers check satisfiability with respect to one or more theories.

A theory is a collection of types3; functions over those types; and axioms over those func-

tions and types. A theory essentially describes the language and semantics for constraints over

types. SMT-LIBv2.5 [19] is a standard that describes a constraint language for SMTsolvers; a set

of theories and logics (a collection of one or more, theories); and benchmarks (i.e. example

constraint sets). Example theories include Core (Boolean), FixedSizeBitVectors (machine inte-

gers), FloatingPoint, and ArraysEx (arrays with extensionality). These theories are combined

together to form logics. For example the QF_ABV logic is for constraints that are quantifier free

and use bit-vectors and arrays of bit-vectors. In our work (chapters 4 and 5) we are concerned

in particular with reasoning using the FloatingPoint theory which is a very recent addition to

the SMT-LIB standard [34].

2http://www.satcompetition.org/
3also known as sorts
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Listing 2.6: An example set of constraints written in the SMT-LIBv2.5 format in the QF_FPBV
logic.

1 (set-logic QF_FPBV)
2 (declare-const x (_ BitVec 32))
3 (declare-const y (_ BitVec 32))
4 (assert (= x y))
5 (assert
6 (not
7 (fp.eq
8 ((_ to_fp 8 24) x)
9 ((_ to_fp 8 24) y)
10 )
11 )
12 )
13 (check-sat)

In Listing 2.6 an example set of constraints (often called a query) in the SMT-LIBv2.5 language

is shown. On line 1 the query declares that is uses the QF_FPBV logic. This is the logic that

combines the FloatingPoint theory and FixedSizeBitVectors theory without using quantifiers.

On lines 2 and 3 the free variables x and y are declared. They are both 32-bit wide bit-vectors.

Next on line 4 the first constraint is asserted. The constraint states that both x and y are equal

to each other (i.e. have the same bit pattern). Then starting at line 5 and finishing at line 12

the next constraint is declared. This constraint converts both x and y to a 32-bit floating point

value and then asserts they are not equal to each other. Here the conversion is specified by

(_ to_fp 8 24). The number 8 states the number of bits in the exponent and number 24

states the number of bits in the significand (including the implicit bit). Note the = and fp.eq

functions are different from each other. fp.eq is IEEE-754 equality and = is SMT-LIB equality.

Finally on line 13 the (check-sat) command tells an SMT solver to check the satisfiability of

the previous listed constraints. This particular query is satisfiable if either x and y have the

same bit pattern that corresponds to an IEEE-754 NaN.

Most SMT solvers use SAT solvers internally to determine satisfiability and thus have benefited

tremendously from improvements to SAT solvers. To interface with a SAT solver two different

approaches are often used – an eager and a lazy approach. In the eager approach the con-

straints are transformed into an equisatisfiable set of Boolean constraints. For example bit-

vector constraints can be transformed into Boolean constraints using a technique called bit

blasting. The eager approach is not always possible because some theories cannot be con-

verted into Boolean constraints in all cases (e.g. the Reals theory). The lazy approach uses

separate solvers for each theory that are combined by communicating via abstractions of the

query being solved using only Boolean constraints. This approach is known as DPLL(T) [143].
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Not all SMT solvers are based on SAT solvers. Some solvers use a random or guided search-

based approach [75, 167, 77] which is incomplete because it can only show satisfiability and

cannot prove unsatisfiability. Our work in chapter 5 falls into this category of search-based

SMT solvers.

A yearly competition known as SMT-COMP4 is run where SMT solver implementations com-

pete on a subset of the SMT-LIB benchmarks. The competition aims to encourage further de-

velopment of SMT solvers and benchmarks.

2.6.2 Floating-point constraint solvers

We now discuss constraint solving for floating-point constraints. This will become relevant

in Chapter 5, where we develop our own floating-point constraint solver. Several program

analysis tools that analyse floating-point programs rely onfloating-point constraint solvers and

are discussed in §2.5.3. Some of the solvers wemention herewill become relevant in Chapter 5

because we compare against them in the chapter.

There are multiple approaches to solving floating-point constraints. Given that floating-point

arithmetic ismeant tomodel real arithmetic, it is tempting to treat floating-point constraints as

real constraints and use a solver for real arithmetic. However this won’t work well because the

semantics of real and floating-point arithmetic are very different. For example floating-point

arithmetic performs rounding at every operation, whereas real arithmetic is exact.

One approach is to convert floating-point constraints to bit-vector constraints (essentially re-

placing each floating-point operation with a circuit implemented using bit-vector operations)

which are then bit blasted to a SAT problem. This is then solved using a SAT solver. This is the

approach taken by Z3 [140] and SONOLAR [149]. The problem with this approach is that it can

produce very large SAT formulas which are difficult to solve [35, 33]. It is also not possible to

perform any high level reasoning (e.g. using knowledge of floating-point properties to aid the

search for a satisfying assignment) once the problem has been converted to bit-vectors or a

SAT problem.

4http://www.smtcomp.org/
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Another approach is to use the previously described DPLL(T) [143] strategy. A problem with

this approach is that it separates boolean reasoning from theory-specific reasoning, which

can lead to poor performance [33]. Z3 also supports this approach and will use it when asked

to solve constraints that combine the FloatingPoint theory with some other theories. For

example, it will switch to this strategy when asked to solve constraints that use a combination

of the FloatingPoint, and ArraysEx (arrayswith extensionality) theories. Whenasked to solve

constraints that use a combination of the FloatingPoint and BitVector theories it will use its

bit blasting strategy. This behaviour of Z3 will become important later in Chapter 4 because

it required us to implement the array ackermanization optimisation that we describe in the

chapter.

Brain et al. [33] describe a different approach, which they implement in the MathSAT5 [46]

solver (note this is not the default behaviour). In their approach all reasoning is performed in

the floating-point theory itself. They use a combination of an interval solver combined with

abstract conflict driven clause learning (ACDCL). The authors claim that it is frequently faster

than the bit blasting strategy.

Zeljić et al. [176] describe a different approach, which they implement in the Z3 solver (note

at the time of writing this is only available in a fork of Z3). They define a framework for ap-

plying approximations (that need not be under- nor over- approximations) to constraints. The

approximated constraints are then solved using existing techniques, previously described. If

the approximation of the constraints are deemed satisfiable, they then use the approximate

model to construct a precise model. If the precise model also satisfies the constraints, satisfi-

ability has been proved. If the precise model does not satisfy the constraints, then the precise

model is used to guide refinement of the approximation and the solving process starts again.

If the approximation of the constraints are deemed unsatisfiable then the proof of unsatisfia-

bility is used to refine the approximation and the solving process starts again. If it is no longer

possible to refine the approximation (i.e. the currently used approximation is precise) then the

constraints are unsatisfiable. The approximation used in their implementation uses floating-

point arithmetic with less precision than the original constraints. Approximation refinement

consists of increasing the precision towards the precision used in the original constraints. The

authors show that their approach is competitive with the ACDCL strategy used in MathSAT5.
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This work is very similar to CBMC’s strategy for handling floating-point constraints [35]. Both

of these works are essentially a form of counterexample-guided abstraction refinement (CE-

GAR) [49].

Leeser et al. [113] describe another approach that they use in their solver, REALIZER. This

solver uses real arithmetic to precisely model the effect of floating-point rounding. The trans-

formed constraints are then given to an existing solver for the theory of real arithmetic. This

approach is very suitablewhenfloating-point constraints need tobe combinedwith constraints

that use reals. The authors’ use case is to check that the deviation of floating-point arithmetic

from its real counter part is within a certain error tolerance.

The FPCS constraint solver uses an interval solver over reals combined with projection func-

tions to solve floating-point constraints [133, 134]. The COLIBRI [36], solver also takes a similar

approach, however their representation of intervals allows for multiple domains (e.g. integer,

known bits) and also supports the FixedSizeBitVectors theory. COLIBRI also distinguishes

itself by supporting the SMT-LIBv2.5 input format and has competed in the 2017 SMT-COMP5.

Some solvers take a search-based approach to solving floating-point constraints. These solvers

are especially relevant to Chapter 5 because the solver we implement belongs to this category

of floating-point solvers. These solvers typically generate random seeds (i.e. a candidate sat-

isfying assignment) as a starting point for the search. These solvers are incomplete because

they only search for satisfying assignments to floating-point constraints. They cannot prove

constraints are unsatisfiable inmost cases because doing sowould require exhaustive enumer-

ation which is usually not practical.

Both theXSat [77] and goSAT [25] reformulate finding satisfying assignments as amathematical

optimisation problem, and then apply existing mathematical optimisation techniques to solve

it. Both solvers support a subset of the FloatingPoint SMT-LIB theory.

The FloPSy [106] and CORAL [167] solvers use meta-heuristic search [83] methods (e.g. alter-

nating variablemethod) to search the space of potential satisfying assignments. A distinguish-

ing feature of Coral is that it optionally support using an interval solver. When this feature is

enabled Coral asks the interval solver to attempt to generate intervals that might contain solu-

tions for each symbolic variable. Values from these intervals are then used to seed the search.

FLoPSy, although open source, is tightly integrated with the Pex symbolic execution tool and

5http://smtcomp.sourceforge.net/2017/
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so can’t be in other contexts. Coral can be used as a stand-alone constraint solver, however it

has its own constraint language that only partially intersects with the FloatingPoint and Core

SMT-LIB theories.
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Chapter 3

Symbolic execution of Boogie programs

3.1 Introduction

Symbolic execution (see §2.2) as a program analysis technique offers advantages over existing

static analysis techniques such as weakest pre-condition generation (see §2.3.1) by providing

precise error traces, and test cases without false positives. All of this is provided without re-

quiring the user to provide program invariants.

Recently there has been growing interest in the use of symbolic execution for testing code

written in production languages such as C [38, 81] and Java [6]. In contrast, few attempts to ap-

ply symbolic execution in the context of intermediate verification languages (IVLs, see §2.3.2)

have been reported [151, 110], and to our knowledge no attempts have been made to compare

symbolic execution and static analysis tools that work at the level of IVLs. This is the research

problem we tackle in this chapter. To tackle this problem we perform a large scale evaluation

of different symbolic execution and static verification tools that all operate on the same IVL.

The work seeks to test two hypotheses:

1. Symbolic executionof an IVL is competitivewith other techniques in termsof bugfinding

and verification.

2. The state-of-the-art for symbolic execution of IVLs can be improved.
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In this work we use the Boogie IVL (see §2.3.2), a popular IVL with several existing front-ends

for different languages, and several back-ends, including a symbolic execution execution tool.

Having several front-ends potentially provides a large source of benchmarks for our evaluation

and having several back-ends provides us with a significant number of tools to compare.

Performing a comparison of existing Boogie IVL back-ends that includes a symbolic execution

tool allows us to answer our first hypothesis. The existing symbolic execution tool, Booga-

loo [151] (see §2.3.4) could be used for this purpose. However performing this comparison

does not answer our second hypothesis. To address both hypotheses we implement our own

symbolic execution tool named Symbooglix, which we empirically optimise and then include

in our comparison of Boogie IVL back-ends. The other Boogie IVL back-ends we compare

against are the Boogie verifier [15], Corral [108], Duality [130], and GPUVerify [26] (see §2.3.4).

Weevaluate the tools on two largebenchmark suites. Thefirst suite consists of 3749Cprograms

taken from the benchmark suite of the International Competition on SoftwareVerification (SV-

COMP) [55], translated to Boogie using the SMACK front-end [156] (see §2.3.3). The translated

programs use mathematical integers to represent bit-vectors in the original C programs and

have a large number of branch points. The second suite consists of 579 GPU kernels written in

OpenCL and CUDA, translated to Boogie using the GPUVerify front-end [26] (see §2.3.3). These

programs use bit-vector types and exhibit loops with large bounds.

Boogaloo does not support bit-vectors, so cannot handle theGPUbenchmarks, and Symbooglix

significantly outperforms Boogaloo on the SV-COMP suite. This supports our second hypoth-

esis. Our results show that Symbooglix finds more bugs than GPUVerify in the GPU bench-

marks, despite GPUVerify being highly optimised for this domain (albeit for verification not

bug-finding). On the SV-COMP benchmarks, Symbooglix is generally less effective than Cor-

ral and Duality, but is complementary to them in terms of bug-finding ability (i.e. Symbooglix

finds bugs that neither Corral nor Duality find and vice versa). This partially supports our first

hypothesis.

Symbolic execution has already been implemented at the level of intermediate languages—

notably KLEE [38], which operates at the level of the LLVM IR [109]. An industry-strength

compiler IR such as LLVM’s presents advantages and disadvantages for symbolic execution,

stemming from the high precision with which language features and the target platform are

taken into account (e.g. undefined behaviour, calling conventions, etc.). This precision en-
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ables a symbolic execution engine to find low-level bugs, but also adds complexity, in terms

of run time overhead, feature addition and code maintenance. In contrast, the syntactic and

semantic simplicity of Boogie makes it an ideal platform on which to initially study the com-

bination of symbolic execution with other analyses, and the design of new optimisations for

more effective symbolic execution. In §3.4.6 we discuss problems that a make an apples-to-

apples comparison between a symbolic execution execution tool for the Boogie IVL and KLEE

difficult and then present a best effort comparison between Symbooglix and KLEE using the

SV-COMP benchmarks. Because it is highly tuned towards C, KLEE is more efficient than Sym-

booglix and finds bugs inmore programs, but Symbooglix is able to verifymore programs than

KLEE can, and finds a significant number of distinct bugs.

This chapter is structured as follows. First, we discuss the design and implementation of Sym-

booglix (§3.2). We then discuss optimisation of Symbooglix (§3.3). We took an empirically-

driven approach to optimising Symbooglix: we selected a small training set from two large

benchmark suites and used only this set to drive optimisation of the tool. This prevented us

from over-fitting Symbooglix to our benchmarks, which might unfairly bias comparison with

other tools andmisrepresent howwell Symbooglixwould performon further benchmarks. We

then discuss our evaluation of Symbooglix, and five state-of-the-art Boogie IVL back-ends: the

Boogie verifier, based on weakest pre-condition generation; Boogaloo, an existing symbolic

execution tool; Corral, based on stratified inlining; Duality based on interpolation; and GPU-

Verify, a verifier for GPU kernels based on weakest pre-condition generation (§3.4). We then

present a brief comparison of the Symbooglix and KLEE symbolic execution tools (§3.4.6). Af-

ter this we note related work (§3.5) and conclude (§3.6).

3.2 Design and Implementation

We designed Symbooglix to be a reusable framework rather than a stand-alone tool, which

enables it to be used as a program analysis method in existing (or yet to be created) Boogie-

based projects. When designing Symbooglix we wanted to avoid “reinventing the wheel” as

much as possible, so we reuse existing components (e.g. the parser and expression language)

of the existing Boogie project from Microsoft Research [30]. As a consequence of using the

existing Boogie project’s libraries Symbooglix is written in C#.
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Figure 3.1: Architecture of Symbooglix.

Figure 3.1 shows a simplified view of the architecture of Symbooglix which illustrates several

components.

The Boogie Parser is the parser of the Boogie project and is not part of Symbooglix. The figure

illustrates a Boogie program being passed to the parser which generates the in memory rep-

resentation of the Boogie program which is passed to the Executor.

The Executor executes the Boogie program and communicates with various components dur-

ing execution. It asks for an execution state from the state scheduler and then executes thenext

command waiting to be executed in that “execution state”. This process repeats until there are

no more “execution state”s left to execute or a resource limit is reached.

The Expression Builder provides a clean interface to Boogie’s expression language and op-

tionally supports expression simplification (see §3.3) and constant caching. This is used to

construct constraints that are added to an execution state’s path constraint set.

The Solver component is used by the Executor to check the satisfiability of constraints. This

component communicates with a constraint solver via the SMT-LIBv2 [20] text interface. Our

current implementation supports the Z3 [140] and CVC4 [22] SMT solvers.

The State Scheduler stores execution states and decides how to schedule them.

Observers register themselveswith the Executor in order to receive call backswhen interesting

events happens. For example a class that logs messages to the console to could subscribe to

the state termination event so it can report to the user whenever a state is terminated.

We have implemented a tool that uses these components (named sbx.exe). For convenience

we refer to this tool as Symbooglix.
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3.2.1 Symbolic execution of the Boogie IVL

Symbooglix implements in-memory symbolic execution, where explored paths are stored ex-

plicitly as execution states. That is, for each explored path, Symbooglix keeps track of the exe-

cution state (program counter, stack and global variables) so that execution can be resumed at

a later stage. As in previous execution systems [38], efficient sharing between states is achieved

through a copy-on-write strategy (see Efficient execution state cloning in §3.3).

Symbooglix’s operates on the unstructured representation of a Boogie program (i.e. a control

flow graph). Execution proceeds as follows. First the executor runs several analysis passes

over the input Boogie program to gather information useful to the executor. Next several pro-

grams transformation passes are run over the input Boogie program to simplify it (e.g. inline

all functions, because of this Symbooglix does not support recursive functions) and put it in

a canonical form. The initial execution state is then created based on a particular entry point

(i.e. the implementation to start execution in).

The non-deterministic commands goto and havoc, not present in many languages, make Boo-

gie a good match for symbolic execution. A goto command takes multiple target basic blocks

and non-deterministically picks a target to which control transfers. This corresponds to the

concept of forking new paths at a branch point in symbolic execution. However, there are two

differences in the way forking new paths is implemented. First, in conventional languages,

forking usually occurs at if statements, so that execution is forked into two paths, following

the then and else sides of the branch. Even switch statements are typically compiled down

into binary conditionals. In contrast, Symbooglix implements n-way forking to match the se-

mantics of goto in Boogie. Second, branching at a goto is unconditional in Boogie; Boogie

programs can exploit unconditional branching to model program behaviours abstractly. Tra-

ditional branching can be simulated via assume statements with mutually exclusive conditions

(see lines 9 and 12 of figure 2.3), and Symbooglix is optimised for this case (see Goto-assume

look-ahead in §3.3).

Recall that havoc is used to assign non-deterministic values to a set of variables. In the context

of symbolic execution, this involves giving each variable a fresh symbolic value. Two other

core Boogie commands that are central to symbolic execution are assume and assert. When

Symbooglix interprets a command of the form assume e, it first asks its solver to check whether

expression e is satisfiable in the current state. If so, e is conjoined to the current path condition
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and execution continues. Otherwise, the path is terminated. To interpret an assert e com-

mand, Symbooglix checks both whether e and ¬e are satisfiable in the current state (note it

is possible for both to be satisfiable). If ¬e is satisfiable, Symbooglix records that the asser-

tion can fail and thus that the program under analysis is erroneous. Regardless of this, if e

is satisfiable then execution continues with e conjoined to the path condition, so that analysis

continues with respect to inputs that do not cause the assertion to fail.

The requires clause on program entry has the purpose of constraining the initial program

state, thus it is treated like an assume. All other requires clauses are treated as assertions on

procedure entry. Similarly, ensures clauses are treated as assertions on procedure exit. A

specification-only procedure (which has no body) is executed by asserting its requires clause,

havocking all variables in its modifies set (specifyingwhich global variablesmight be updated),

and assuming its ensures clause.

To handle old expressions (see §2.3.2) Symbooglix records for each stack frame the value of

every used old expression in the requires and ensures clauses for the procedure corresponding

to the stack frame.

3.2.2 Path exploration

An important aspect of symbolic execution is the order in which feasible paths are explored.

This is typically controlled by search heuristics, in Symbooglix’s case this is handled by the

“state scheduler” component. In Symbooglix we use a variant of the depth-first search (DFS)

strategy that aims to prevent the search getting stuck in loops by always preferring to follow

the path leaving a loop if it is feasible. This variant behaves like a normal depth first search in

all other aspects.

3.2.3 Constraint solving

Symbooglix’s symbolic expressions are constructed using Boogie’s expression building API. To

support our work, we have contributed several related changes to the upstreamBoogie project

(including many bug fixes). The most important changes were the ability to make expressions
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immutable and allow efficient structural equality testing between them. The former allows

safe sharing of expressions across execution states, and the later is used bymany optimisations

in Symbooglix.

To answer satisfiability queries during exploration and obtain concrete solutions to the col-

lected constraint sets, constraints are printed in the standard SMT-LIBv2 format [20], and then

passed to an SMTsolver. Our current implementationuses the Z3 constraint solver [140], due to

its support for all the different features required by Symbooglix, such as integers, bit-vectors,

quantifiers, maps and uninterpreted functions. Any other solver implementing the necessary

features could be easily used if available. Using a text-based format is simple and portable be-

tween solvers, but substantially slower than directly interacting with a solver through an API

due to text printing and parsing overhead; we plan to consider use of the Z3 API in futurework.

3.2.4 Inconsistent assumptions

Boogie differs from conventional languages in that the entire program execution is subject to

a set of initial constraints, specified via axioms, the unique qualifier on global constants, and

requires clauses associatedwith the procedure fromwhich execution commences (see §2.3.2).

If the initial constraints are inconsistent (i.e. they are equivalent to false), the program is triv-

ially correct. In our experience, inconsistency of initial constraints is often unintentional, and

indicative of a problem with the Boogie program under consideration. To guard against this,

Symbooglix supports an optional mode that checks the consistency of initial constraints be-

fore execution starts. If this mode is disabled then Symbooglix requires that the assumptions

are consistent, otherwise its behaviour is undefined. To determine which assumptions are in-

consistent, we used an optional feature of Symbooglix which checks if the assumptions are

satisfiable using an SMT solver. If the assumptions are not satisfiable, the unsat-core feature

of the SMT solver is used to determine exactly which assumptions are in conflict.

3.3 Optimisations

Our initial design of Symbooglix included only a few basic optimisations which we imple-

mented without benchmarking the tool. We then optimised Symbooglix in an empirically-

driven manner, guided by performance on a set of benchmarks. Because we wanted to com-
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pare Symbooglixwith other Boogie analysis tools andwished to understand the extent towhich

Symbooglix’s optimisationswould be generally applicable, wewere cautious not to overfit Sym-

booglix’s optimisations to the benchmarks used in our experimental evaluation. To avoid this,

we randomly selected a training set consisting of 10% of our benchmarks, and benchmarked

Symbooglix exclusively with respect to this training set during optimisation (see §3.4.4). Be-

low, we summarise the main optimisations we implemented as a direct result of training.

Unique global constants constraint representation. This optimisation was motivated by per-

formance problems we observed when running on the SV-COMP portion of the training set,

which declares global variables with the unique qualifier (see §2.3.2). Our initial approach

to handling unique, by emitting a quadratic number of constraints to assert pairwise dis-

jointness, did not scale well. To improve performance, we took advantage of the SMT-LIBv2

distinct function, which returns true iff all its arguments are pairwise distinct and is effi-

ciently handled by Z3.

Global dead declaration elimination. We observed that benchmarks in the SV-COMP training

set oftendeclaremany global variables, functions and axioms that arenot usedby theprogram.

These dead declarations are emitted by SMACK for every Boogie program it generates, e.g. for

SMACK’s general-purpose floating point representation andmemorymodel. We implemented

an analysis that initially marks a global declaration as necessary if it is used syntactically by a

procedure in the program, and then iterativelymarks further declarations as necessary if they

are referred to by a declaration already marked as necessary. Once a fixed point is reached,

all declarations not marked as necessary are removed.

Goto-assume look-ahead. We developed this optimisation based on intuition related to sym-

bolic execution of Boogie programs. Recall from the example of §2.3.2 that conditional control

flow is realised in a Boogie program through a combination of goto and assume commands.

The initial implementation of Symbooglixwould always fork at a goto command. However, the

current path constraints oftenmean that one of the assume statements targeted by the gotowill

have a failing guard. (This is a known issue in symbolic execution: priorworkhas reported that

often fewer than 20% of symbolic branches encountered during execution have both sides fea-

sible [40].) As a result, Symbooglix would often spawn a new execution state, only to kill it at

the next assume instruction. The goto-assume look ahead optimisation changes how the goto
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command is handled by looking ahead at the next instruction of each target basic block. If the

next instruction is an assume, we check whether it is satisfiable, and if not, we do not fork a

new state for that path.

In effect, one can think of this as Symbooglix looking for a goto followed by an assume and

treating it like a branch instruction from a conventional non-deterministic language.

A small complication identifiedby the SV-COMP training setwas that SMACKoftenadds assume

true statements at various locations to communicate debug information (as attributes on the

instruction) for the original C program, which could interferewith our optimisation. Wewrote

a simple transformation to remove these trivial assumes.

The remaining optimisations are similar to the ones implemented by existing symbolic execu-

tion engines:

Expression simplification. These optimisations simplify expressions as they are constructed,

by folding constants (e.g., 5+4 = 9) and rewriting certain expression patterns (e.g., 1+x+2 =

3+x). The patterns we simplify are based on potential simplifications we observed when run-

ning Symbooglix on the training set, and on some of the patterns used by KLEE. To help en-

sure preservation of the exact semantics of Boogie’s operators during simplification, we used

the Z3 SMT solver to verify correctness of many of the rewriting patterns. For bit-vector types,

we checked the simplification with respect to a single, representative bit width only. One ex-

ample of subtle semantics is that the div and mod operators use Euclidean division. Because

our implementation language, C#, uses truncated division we had to implement Euclidean di-

vision in terms of truncated division (following [114]) to provide constant folding for div and

mod.

Constraint independence. This constraint solving optimisation, inspired by EXE [39], elimi-

nates those constraints which are not necessary to determine the satisfiability of a given query.

The optimisation transitively computes dependent constraints by considering the set of used

variables and uninterpreted functions until a fixed point is reached.
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Map updates at concrete indices. This optimisation was inspired by the way in which KLEE

handles array accesses at concrete indices. In Symbooglix the value of amap variablewas orig-

inally represented as an expression tree. Initially the expression is just the symbolic variable

representing the map (e.g. m). As the map is populated, map updates are added to this expres-

sion. To illustrate this consider the Boogie program shown in Listing 3.1.

Listing 3.1: An example Boogie program illustrating performing several maps stores and then
a read at concrete indices.

1 procedure main() {
2 var m:[int]int;
3 m[0] := 1;
4 m[1] := 2;
5 m[2] := 3;
6 assert m[0] == 1;
7 }

First on line 2 a map named m is declared. At this point the program the expression represent-

ing themap is just a fresh symbolic variablewhichwe’ll call m_fresh. Next on line 3 amap store

of value 1 to index 0 is performed. At this point in the program the expression representing

m is a store expression writing 1 at index 0 to m_fresh. Several more map stores at concrete

indices occur and then an assert is performed. In the assert a select operation is performed

which reads from index 0 on the expression currently representing themap m. The expression

that the constraint solver would be asked check satisfiability for is shown in Figure 3.2a. This

expression is not optimal. Notice that there is a chain of store operations at concrete indices,

followed by a select operation at a concrete index that was stored lower down the expression

tree. By visual inspection we can see that performing select on index 0 on the child expres-

sion should return 1. Given this information a much smaller expression could be sent to the

constraint solver which is shown in Figure 3.2b. This expression would normally be constant

folded, but for clarity we don’t show this. However our initial implementation of Symbooglix

didn’t try to optimise this case and so would pass the unoptimised version of the constraint to

the underlying constraint solver. For this small example it is not a problem but if a large num-

ber of map stores were performed to the map (in a loop for example) then the constraint sent

to the underlying constraint solver would be very large which would cause Symbooglix to ex-

hibit very poor performance.

To address this, we optimised for the casewhere only concrete indices are used to index amap.

In this case, rather than updating the expression tree representing the map with new store

nodes, we store in a separate data structure a set of pairs mapping map stores at concrete

indices to their corresponding value. When reading from a location at a concrete index that
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was previously written, the corresponding value is returned directly. In the case of a read from

a concrete index not contained in the set, a map select expression that reads from the current

version of the expression tree (without the current set of concrete map stores) at that concrete

index is returned. In the case of a map select/store at a symbolic index, Symbooglix switches

to using an expression tree to represent the map by flushing all the concrete map stores to the

expression tree.

store

m_fresh 0 1

store

1 2

store

2 3

select

0

=

1

(a) Unoptimised

=

1 1

(b) Optimised

Figure 3.2: Constraint sent to constraint solver for assert command in Listing 3.1.

Map updates at symbolic non-aliasing indices. This optimisation was motivated by several

benchmarks where symbolic indices were used to index maps, but such that the associated

indices could not alias. In the examples we investigated, the indices were always of the form

C + s, with C a constant mathematical integer, distinct for each index, and s a symbolic math-

ematical integer variable, common among the indices. Clearly for constants C0 6= C1, we are

guaranteed to have (C0 + s) 6= (C1 + s).

To illustrate this consider the Boogie program in Listing 3.2.

Listing 3.2: An example Boogie program illustrating performing several maps writes and then
a read at concrete indices.

1 procedure main() {
2 var m:[int]int;
3 var i:int;
4 m[i] := 1;
5 m[i+1] := 2;
6 m[i+2] := 3;
7 assert m[i] == 1;
8 }
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On line 2 a map m is declared and then on line 3 a symbolic integer i is declared. Several

stores are then performed at symbolic indices with i used as a base for the index. Note that

the indices are guaranteed to not alias. Then on line 7 an assert is performed that performs a

map select. Figure 3.3a shows the expression that would be sent to the constraint solver. This

expression is not optimal. Notice that there is a chain of store operations at symbolic indices,

none ofwhich alias. Thismeans that the select operation at index xwould return 1. Given this

information a much smaller expression could be sent to the constraint solver which is shown

in Figure 3.3b.

This lead us to generalise the map updates at concrete indices optimisation to store a map-

ping of non-aliasing (concrete or symbolic) indices to expressions in a separate data structure

(rather than constant indices to expressions). Expression aliasing is determined by simple syn-

tactic patterns; we currently recognise the case of distinct constant literals (capturing the ini-

tial optimisation), and the set of expressions matching the pattern C + s, where C is distinct

in each expression and where the types of C and s are mathematical integers. This optimisa-

tion is currently implemented only for integers, and not bit-vectors.

store

m_fresh x 1

store

x+1 2

store

x+2 3

select

x

=

1

(a) Unoptimised

=

1 1

(b) Optimised

Figure 3.3: Constraint sent to constraint solver for assert command in Listing 3.2.

Efficient execution state cloning. This optimisationwas inspiredbyhowKLEEhandles cloning

of execution states, and was motivated by high memory usage in Symbooglix on the training

set. The number of execution states can grow quickly during symbolic execution, so efficient

state cloning, both in terms of memory used and time taken, is important. Symbooglix orig-

inally cloned states in a simple, non-optimal manner. Because expressions are immutable in

Symbooglix they never need to be cloned, but the data structures that a state uses to refer to
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them (e.g. a dictionary mapping global variables to expressions) do. The initial implementa-

tion simply made new copies of these data structures. However, profiling several memory-

intensive training set benchmarks revealed that a lot of memory was being used by these data

structures. To overcome this, we implementedmore efficient execution state cloning using C#

immutable data structures from the C# System.Collections.Immutable library. For our internal

representation of maps, which are not immutable, we added a simple copy-on-write mecha-

nism similar to that which KLEE uses to represent memory objects.

3.4 Evaluation

Wenowpresent indetail ourmethod for evaluating Symbooglix anda selectionof otherBoogie-

based tools. For reproducibility, the tools and all non-commercially sensitive benchmark pro-

grams are made available online at http://symbooglix.github.io.

We first discuss the benchmark suites used for the evaluation in §3.4.1 and then in §3.4.2 the

steps thatwere performed to prepare them. Next in §3.4.3we discuss the tools that Symbooglix

is compared against and how they were configured. In §3.4.4 we discuss the methodical man-

ner in which Symbooglix was optimised in preparation for evaluating it against other tools.

We then discuss this evaluation in §3.4.5. Finally in §3.4.6 we perform a brief comparison of

Symbooglix against another symbolic execution engine – KLEE.

3.4.1 Benchmark suites

We consider two benchmark suites containing Boogie programs from two distinct problem

domains, and originating from two different languages.

TheSV-COMPbenchmark suite (abbreviated to SV-COMP) consists of programsgenerated from

the C benchmarks used in the 2015 “International Competition on Software Verification” (SV-

COMP 2015), translated into Boogie using SMACK [156]. We used the SMACK-translated pro-

grams made available online1 by the SMACK authors. The repository contains 3760 bench-

marks, of which we use 3749: four benchmarks exhibit inconsistent assumptions (see §3.2)

and seven are empty2.

1https://github.com/smackers/sbb
2https://github.com/smackers/sbb/issues/1
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The GPU benchmark suite (abbreviated to GPU) consists of Boogie programs generated from

a set of 579 GPU kernels written in OpenCL and CUDA, which have been collected to evaluate

the GPUVerify tool [26, 14]. The original kernels are drawn from a number of open-source GPU

benchmark suites and one commercial suite. Among these kernels, at least 32 exhibit data

race errors (which manifest as failing assertions in the Boogie programs generated by GPU-

Verify): 5 are genuine bugs previously found by GPUVerify, and 27 are artificial bugs injected

in a previous evaluation of GPUVerify [26].

We regard a benchmark as buggy if the Boogie program can exhibit an assertion failure (in-

cludes requires and ensures failures). Typically such an assertion failure corresponds to a bug

in the original C program or GPU kernel, but this is not always the case, e.g. due to the use

of over-approximating abstractions during the translation into Boogie, or due to bugs in the

translation tools. Focusing on finding assertion failures in the Boogie programs, regardless

of how those programs were generated, provides a fair basis on which to compare the Boogie

analysers that we evaluate.

TheSV-COMPandGPUsuites provide a comprehensive andchallenging set of evaluationbench-

marks, covering correct and buggy examples. The SV-COMP suite utilises mathematical inte-

gers while the GPU suite utilises bit-vector operations.

Running program analysis tools on these benchmarks allowed us to examine and compare

several important performance characteristics of these tools. These characteristics are the

number of true negatives, true positives, false negatives, false positives, and inconclusive re-

sults (along with the reason); and the tool’s run time.

3.4.2 Benchmark preparation

Checking for inconsistent assumptions. As discussed in §3.2, Symbooglix expects the initial

set of assumptions of a Boogie program to be consistent if its optional checking mode is dis-

abled. In our evaluation we decided not to use the checking mode because no other tool per-

forms this check and thus Symbooglix would be unfairly penalised in terms of tool run time.
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We were not expecting to find programs with inconsistent assumptions, but we found four

cases in each suite. In SV-COMP we discovered global constants marked as unique, requiring

their values to be distinct, together with axioms constraining the constants to have the same

value. We removed these benchmarks and reported the issue3 to the SMACK authors.

In GPUwe discovered that three of the programs had inconsistent requires clauses which had

gone unnoticed for several years; we applied obvious fixes to these clauses and retained the

benchmarks. The other example in GPU, arose from a single-threaded kernel on which race

checking was performed. GPUVerify’s front-end generates inconsistent axioms for this exam-

ple by design, because a single-threaded kernel is vacuously race-free.

Labelling benchmarks. To compare Symbooglix with competing tools in terms of bug-finding

ability and capability to perform exhaustive verification, we tagged each benchmark with one

of the following labels:

1. Correct: The benchmark is free from bugs

2. Incorrect: The benchmark contains at least one bug

3. Unknown: The benchmark may or may not contain bugs

To infer asmany correct and incorrect labels as possible, we devised the following experiment.

For eachbenchmark, we ran each compatible Boogie tool introduced in §2.3.4 (inmultiple con-

figurations, as detailed in §3.4.3), with a timeout of 900 seconds and a memory limit of 10 GiB.

We did not run Symbooglix at this point, because initially we wanted to use the labels to select

a training set for Symbooglix and evaluate its progress over time (see §3.4.4). If one tool classi-

fied a program as correct and another tool classified the program as incorrect, we investigated

the reasons for this, knowing that one tool must be wrong in its analysis. Otherwise, if at least

one tool classified a program as correct we labelled the program correct, while if at least one

tool classified a program as incorrect we labelled the program incorrect. Because Boogie and

GPUVerify can produce false positive bug reports, we ignored cases where these tools classi-

fied a program as incorrect during the labelling process. We labelled a benchmark unknown

if no tool could reliably classify the program as correct or incorrect, except in cases where an

existing label indicating the program’s status was provided by the benchmark suite.

3https://github.com/smackers/smack/issues/71
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We found eight benchmarks for which Boogaloo reported a bug and at least one other tool

reported successful verification. We traced this to a bug in Boogaloo: the tool did not support

builtin function attributes, treating functions equipped with these attributes as uninterpreted

functions rather thanmapping them directly to specific SMT-LIB operations. We reported this

to the Boogaloo developers and they provided a fix which we used for all future experiments.

During the labelling process, we checked for generic failures and crashes in the tools. This

revealed one bug4 shared by Boogie and Corral, four bugs in Corral (including a case where

Corral would report a false positive), and a crash bug5 in Duality. We reported these bugs and

in some cases provided our own fixes. The Corral bugs were promptly fixed.

The SV-COMP suite already provides labels for its constituent benchmarks. However, we found

76 discrepancies between these existing labels and the ones we inferred. Because the labels

are for the original C programs in SV-COMP, the mismatch could be caused by an incorrect

translation from C to Boogie by SMACK, or it could be a genuine mislabelling of the original

benchmark. We did not examine all 76 cases, but for the ones we did examine, the discrepancy

was caused by the translation process. For example, two of the benchmarks check whether

a self-equality comparison on an arbitrary floating point variable can fail. The assertion in

the original C program could fail because NaN == NaN is false6. However, the corresponding

assertion in the Boogie program could not fail because NaN was not represented in SMACK’s

model of floating point numbers. We reported this issue7 to the SMACK developers.

For the GPU suite, we labelled the benchmarks that contained deliberately injected bugs as

incorrect. We surprisingly foundmismatches between two kernels that were supposed to have

injected bugs and the results reported by the tools applied to those kernels. In one of the

kernels it turned out that the injected code did not actually induce a bug so this kernel was

removed from our benchmark suite. The other kernel had a mistake (introduced by an error

in the injection process) causing the injected bug to be unreachable. We fixed this kernel in

our benchmark suite so that the injected bug was reachable.

The Initial columns in table 3.1 summarise our labellingwithout Symbooglix. At the end of our

study, having optimised Symbooglix, we were able to re-label the benchmarks based on addi-

tional accuracy from Symbooglix’s results. The Final columns in table 3.1 reflect this labelling.

4http://boogie.codeplex.com/workitem/10246
5http://corral.codeplex.com/workitem/1
6NaN stands for “Not a Number”. Floating-point comparisons always return false if one of the operands is NaN
7https://github.com/smackers/smack/issues/66
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Note that the number of Correct labels decreases in the Final labelling because the labels pro-

vided with some SV-COMP programs were incorrect with respect to the Boogie programs (as

discussed earlier).

Table 3.1: Initial and final benchmark labellings.

SV-COMP GPU
Initial Final Training Initial Final Training

Correct 2705 2704 270 479 491 45
Incorrect 1044 1045 104 37 38 3
Unknown 0 0 0 63 50 9
Overall 3749 3749 374 579 579 57

3.4.3 Tools evaluated

We compare Symbooglix with all actively maintained open-source tools that analyse Boogie

programs: the Boogie verifier, Boogaloo, Corral, Duality, and GPUVerify (see §2.3.4).

All these tools use Z3 for constraint solving. In our experiments we used Z3 v4.3.1 with Sym-

booglix andBoogaloo, andZ3 v4.3.2with the remaining tools. This discrepancy is due toBooga-

loo’s dependence, at time of running experiments, on Z3 v4.3.1, and due to time constraints

preventing us from re-running Symbooglix using Z3 v4.3.2.

We did not run Boogaloo and Duality on the GPU suite because they do not support the bit-

vector types and operations generated by the front end of GPUVerify. We could not apply GPU-

Verify to SV-COMP, because GPUVerify only supports analysis of Boogie programs generated

by its own front-end. The configuration used for each tool was as follows:

Boogaloo was run twice on SV-COMP: once with a loop bound of 8 and once without a bound.

Concretisation was disabled to avoid false negatives and counter-example minimisation was

disabled to increase performance.

Boogie was run with the -errorLimit:1 option, so that at most one error is generated.

Corral was run twice on each suite: once with a recursion bound of 8 and once with a very

large bound (∼ 230) on SV-COMP; and once with a bound of 64 and once with a very large

bound (∼ 230) on GPU. We picked a bound of 8 for SV-COMP because this was used by the

authors of SMACK for their SMACK+Corral SV-COMP 2015 submission [87]. The larger bound

of 64 for GPUwas chosen because our experience with these benchmarks indicated that loops
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with large iteration counts are common (a consequence of the throughput-oriented nature of

GPU applications). The very large bound (∼ 230) is approximately half the largest integer that

Corral supports for specifying the bound; the Corral authors advised against using the largest

integer due to potential overflow bugs in Corral.

Duality was run using the same large bound as used for Corral (∼ 230); we used the same

bound since Duality is built on top of Corral. We did not consider a smaller bound because the

interpolation-based analysis used by Duality depends upon the ability to unwind a program to

a significant depth.

GPUVerifywas run on the GPU suite with automatic invariant inference enabled. We disabled

extra invariants with which the benchmarks had been manually annotated, so that GPUVerify

ran in an unassisted manner.

Symbooglixwas runusing its default settings, except that the checking of inconsistent assump-

tionswas disabled (see §3.4.2) and the timeout per solver querywas set to 30 seconds. Having a

solver timeout prevents Symbooglix getting stuck checking the feasibility of a particular path

but may prevent full exploration of the benchmark.

Each tool was allowed a maximum execution time of 900 seconds per benchmark (which is

the time used at the last edition of SV-COMP, except that we use wall clock time instead of

CPU time). A run of a tool on a single benchmark consists of two pieces of information, the

result type and the execution time. The former is the answer the tool gives—bug found, veri-

fied (i.e. no bug found, no tool crash, and no bound, memory limit, solver or global timeout

reached), or unknown (i.e. no bug found and not verified). In the case of Symbooglix and

Boogaloo verified is equivalent to exploring all feasible paths and finding no bugs.

Each tool was executed three times on the same benchmark, and these runs were combined

using the following approach. For results types, if at least one run reports verified or bug

found, we take that result (we initially observed conflicting result types due to tool bugs, but

these disappeared once the bugs were fixed). Otherwise, if all runs result in unknown, the

overall result is unknown. The repeat runs of tool is to handle non-determinism. There are

several sources of non-determinism. First, for the large tool comparison, the nodes used on

the compute cluster were not guaranteed to have identical hardware. Second, there could be
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some non-determinism in the tools themselves (although we did not observe this). Finally, if

a tool reports a result very close to the timeout, in repeat runs this may fluctuate between a

result and a timeout due to small fluctuations in timing due to the operating system scheduler.

To combine the execution times, we treat any of the three results that were of type unknown

as having taken the maximum allowable time (i.e. 900 seconds). We then compute the arith-

metic mean of these times. The rationale here is to penalise tools that terminate abnormally

(e.g. crash) after a short amount of time.

All tools except Boogaloo are written in C#. To run them on our Linuxmachine, we usedMono

3.12.1, with a minor patch8 to fix crashes we were experiencing.

3.4.4 Evaluation of Empirically-Driven Optimisations

As discussed in §3.3, we took an empirically-driven approach to optimising Symbooglix, incre-

mentally optimising the tool guided by a training set. Doing this work is necessary because, in

order to answer hypothesis 2 (see §3.1) we need to make Symbooglix as performant as possi-

ble, if we are to improve on the state-of-the-art. The comparison of the Boogie tools in §3.4.5

uses the version of Symbooglix that results from this optimisation work.

The training set was obtained by taking the prepared benchmarks (see §3.4.2) and randomly

selecting 10% of each label for both benchmark suites. The number of benchmarks used for

our training set brokendownby label canbe seen in theTraining columnsofTable 3.1, totalling

374 benchmarks from the SV-COMP suite and 57 benchmarks from the GPU suite. The size of

the GPU training set is not exactly 10% of the initial benchmark labelling because the training

set was selected based on results from an early run of the tools in which the tools were not run

optimally. This led to fewer benchmarks being labelled Correct and more benchmarks being

labelled Unknown.

At various intervals during Symbooglix’s optimisation we stopped development and ran that

version of Symbooglix on the training set. We refer to these versions of Symbooglix as snap-

shots. We monitored our progress by comparing the performance of the latest snapshot to

8https://github.com/mono/mono/pull/1649
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previous snapshots. The following list details the eleven snapshots, giving each a short name

and indicating the order in which the optimisations of §3.3 were added. Due to the nature of

our development, the optimisations are applied cumulatively.

1. Baseline: the starting point for our optimisation work; incorporates unique global con-
stants constraint representation

2. GlobalDDE: adds global dead declaration elimination.

3. GotoAssumeLA: adds goto-assume look-ahead.

4. ExprSimpl: adds expression simplification.

5. ConstrIndep: adds constraint independence.

6. RemSomeRecur: improves an algorithm that searches expressions for symbolic vari-
ables anduninterpreted functionsbymaking it iterative (rather than recursive) andcaching
results; adds further expression simplification rules; adapts stack size to avoid overflow
errors.

7. RemSomeDbg: removes a data structure used for debugging that was accidentally left
behind. We discovered this after profiling the memory usage of Symbooglix.

8. MapConstIdx: adds map updates at concrete indices.

9. MapSymIdx: adds map updates at symbolic non-aliasing indices.

10. EffcntClone: adds Efficient execution state cloning.

11. SmplSolv: optimises the solver interface to assess whether the expression to be checked
for satisfiability is constant or already in the constraint set.

Experimental setup. To assess the progress of our optimisation effort, we ran each snapshot

on the training set on a singlemachinewith an eight core Intel® Xeon CPU (3.3GHz) with 48GiB

of RAM running Linux. We used the process described in §3.4.3 to run Symbooglix, enforcing

a 5GiB memory limit per benchmark.

To visualise the progress of Symbooglix over time we use quantile function plots as used in SV-

COMP [55]. In Figure 3.4 the top and bottom plots show results for the eleven snapshots for

the SV-COMP and GPU training sets, respectively. Each curve represents a run of Symbooglix

on a particular snapshot. We compute a score for each snapshot by adding one point for each

benchmark that the snapshot accurately classifies as correct or incorrect and subtracting one

point for inaccurate classifications. For classificationwe used the initial labelling of §3.4.2, but

updated this labelling as Symbooglix managed to classify additional benchmarks. Each point

denotes a benchmark that was correctly classified as correct or incorrect. The y-coordinate is

the time taken to analyse the benchmark, and for each curve, benchmarks are sorted based

on time. The x coordinate represents the accumulated score for the snapshot. Thus a point
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(x, y) shows that analysis takes y seconds or fewer for the previous x benchmarks plotted. The

y-axis uses a linear scale between 0 and 1, and a log scale thereafter. This prevents times close

to 0 frommaking the range of the y-axis excessively large. The ordering of the rightmost data

point on the axis ranks the snapshots in terms of classification ability, the width of the curve

along the x-axis is the number of correct classifications, and the area under a plot represents

the total execution time for the correctly-classified benchmarks in that snapshot.
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Figure 3.4: Quantile function plot for Symbooglix running on the training sets for SV-COMP
(top) and GPU (bottom) at different snapshots. Due to the large number of snapshots, the plot
is designed to be viewed in colour. The maximum possible accumulative scores are 374 (SV-
COMP) and 57 (GPU).
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Snapshot results for the SV-COMP training set. The top plot in Figure 3.4 shows the quantile

plot for SV-COMP. Most snapshots bring improvements to either the number of correctly clas-

sified benchmarks or the overall run time (or both). The most substantial impact is made by

the GlobalDDE and ExprSimpl optimisations. Note that the Baseline is not visible on the plot

because the SV-COMP benchmarks contain many unused universally-quantified axioms over

uninterpreted functions. In Baseline these are all passed to the constraint solver, causing all

benchmarks to time out. The GlobalDDE snapshot eliminates these unused axioms, allowing

Symbooglix tomake progress. The other high-impact optimisation is ExprSimpl, which allows

six additional benchmarks to be correctly classified, and also brings a significant improvement

in running time. Finally the MapSymIdx optimisation allows four additional benchmarks to

be classified.

Snapshot results for theGPU training set. Thebottomplot in Figure 3.4 shows the quantile plot

for the GPU suite. Baseline is present in this plot because the GPU suite does not use quantified

axioms, allowing Symbooglix tomakeprogress from thebeginning. As in SV-COMP, ExprSimpl

improves performance (though here does not classify additional benchmarks). RemSomeRe-

cur leads to a significant performance gain and four additional correctly-classified bench-

marks. Several optimisations do not make any difference on the GPU suite: GotoAssumeLA

(due to the very limited amount of forking that occurs in the GPU benchmarks), MapConstIdx

(GPUVerify’s front-end employs a symbolic representation of thread ids, meaning that maps

are rarely indexed concretely), and MapSymIdx (because the optimisation does not currently

support bit-vectors).

Snapshot results for the entire SV-COMP and GPU suites are included on the project web-

site https://symbooglix.github.io.

3.4.5 Comparison of Boogie back-ends

In this sectionwe compare the tools discussed in §3.4.3 on the benchmarks discussed in §3.4.1.

The goal of this work is to answer hypotheses 1 and 2 as discussed in §3.1.
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Experimental setup. We ran the comparison of the tools on a large general purpose computing

cluster9 with 20-core Intel® Ivybridge CPU nodes, each with 128 GiB RAM running Linux. We

used the approach discussed in §3.4.3 to run each tool, and enforced a memory limit of 10 GiB

per benchmark. Our timing results are prone to fluctuations due to hardware differences be-

tween nodes; we in part account for this by reporting averages over three independent runs.

Results table. Table 3.2 shows the extent to which the tool configurations we compare were

able to verify or find bugs in the SV-COMP and GPU suites. For Boogaloo and Corral, the 8,

64 and NB suffixes indicate whether the tools were invoked with a bound of 8, 64, or with no

bound (for Corral, NB actually means the huge bound of ∼ 230). The Verified and Bug found

columns indicate, for each tool, the number of benchmarks labelled correct and incorrect, re-

spectively, that the tool could accurately classify as such. False alarms identifies cases where a

tool reports a correct benchmark as incorrect. Unknown captures timeouts, memory exhaus-

tion and crashes. As expected, only the Boogie verifier and GPUVerify report false alarms, and

no tool reported a false negative (classifying an incorrect benchmark as correct).

Table 3.2: Results for Boogie analysis tools applied to the SV-COMP and GPU suites, using final
classification labels.

SV-COMP suite
Tool Verified Bug found False alarm Unknown

Boogie 0 1021 2668 60
Boogaloo-8 43 122 0 3597
Boogaloo-NB 64 122 0 3563

Corral-8 1348 541 0 1860
Corral-NB 1365 553 0 1831
Duality 1856 426 0 1467

Symbooglix 236 395 0 3118
GPU suite

Tool Verified Bug found False alarm Unknown
Boogie 260 35 165 119

Corral-64 298 28 0 253
Corral-NB 297 28 0 254
GPUVerify 403 34 76 66
Symbooglix 303 35 0 241

Comparison of Symbooglix andBoogaloo. Table 3.2 shows that for the SV-COMPbenchmarks,

Boogaloo-NB is more effective than Boogaloo-8. Symbooglix verifies more benchmarks than

Boogaloo-NB: 236 vs. 64. The tools verify 58 common benchmarks, with Symbooglix verify-

ing 178 benchmarks for which Boogaloo-NB reports unknown, and Boogaloo-NB verifying 6
9http://www.imperial.ac.uk/admin-services/ict/self-service/research-support/hpc/hpc-service-

support/service/
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benchmarks for which Symbooglix reports unknown. Symbooglix was also able to find more

bugs than Boogaloo-NB: 395 vs. 122. The tools find bugs in 107 common benchmarks, with

Symbooglix finding bugs in 288 benchmarks for which Boogaloo-NB reported unknown, and

Boogaloo-NB finding bugs in 15 benchmarks for which Symbooglix reports unknown. Recall

that Boogaloo cannot be applied to the GPU suite because it does not support bit-vectors. This

shows that Symbooglix has improved on the state-of-the-art of symbolic execution for the Boo-

gie IVL, given that Boogaloo is the only other symbolic execution tool for the Boogie IVL. These

results support hypothesis 2 (see §3.1).

Comparison over the SV-COMP suite. Comparing all the tools applied to the SV-COMP suite,

Table 3.2 shows that Corral and Duality are the clear winners, with Corral-NB performing best

in terms of bug-finding ability, andDuality provingmost capable at verifying benchmarks. It is

not surprising that Symbooglix is less effective at verification than these tools, since symbolic

execution is primarily geared towards finding bugs, and suffers from path explosion on bug-

free programs. In terms of bug-finding ability, Symbooglix is some way behind Corral-NB,

finding bugs in 395 vs. 553 benchmarks.

To assess whether Symbooglix and Corral-NB have complementary bug-finding capabilities,

we compared times taken for these tools to find bugs for all SV-COMP benchmarks labelled

incorrect. The comparison is visualised by the scatter plot of Figure 3.5. A point at (x, y) indi-

cates that for a given incorrect benchmark, Corral-NB and Symbooglix took x and y seconds,

respectively, to find the bug. Cases where the tools reported unknown are treated as reaching

the 900 second timeout limit. Points above the diagonal indicate that Corral-NB outperformed

Symbooglix (295 cases), points below the diagonal indicate that Symbooglix outperformedCor-

ral (309 cases). Both tools reported unknown for 441 benchmarks (these points lie at the top

right corner of the plot). The shape of the plot clearly shows that the tools have complemen-

tary abilities when it comes to bug-finding: the tools find bugs in 344 common benchmarks,

but in 51 cases Symbooglix finds a bug where Corral-NB does not (the points lying on the far

right vertical) and in 209 cases Corral-NB finds a bug where Symbooglix does not (the points

lying on the top horizontal). The large number of points lying close to the x-axis indicate cases

where Symbooglix finds a bug within a matter of seconds, but where the time taken by Corral

varies dramatically. For 70 benchmarks where Corral-NB takes more than 100s to find a bug,
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Symbooglix finds a bug within 10s, and there are no benchmarks for which the reverse is true.

An analogous plot comparing Symbooglix with Duality, presented on our project website10,

shows a very similar picture.

Note that our choice of a timeout of 900 seconds does not affect our conclusions. If a smaller

timeout had been chosen that some points along the axes would move to the top right corner

but the same trend of complementarity would be observed. If the timeout was increased the

trend of complementarity would continue. All points that are currently not timeouts would

remain where they are and the others points would either remain as timeouts as the timeout

was increased or would move to be positioned along one of the axes.
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Figure 3.5: Comparison of bug-finding times on the SV-COMP suite for Symbooglix and Corral-
NB.

Comparison over the GPU suite. Table 3.2 shows that Symbooglix finds the most bugs in GPU

among the tools that do not report false alarms: 35 bugs compared with 28 bugs found by both

Corral-NB and Corral-64 (the same bugs are identified by each Corral configuration). Further-

more, Symbooglix finds a superset of the 28 bugs found by Corral. The Boogie verifier also

find 35 bugs, but with a high false alarm rate (165 alarms); GPUVerify finds 34 bugs, with a

lower false alarm rate (76 alarms). Comparing GPUVerify and Symbooglix further, both tools

find bugs in 31 GPU benchmarks, with Symbooglix finding 4 bugs not found by GPUVerify, and

GPUVerify finding 3 not found by Symbooglix.

10https://symbooglix.github.io
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Symbooglix is able to verify slightlymore benchmarks thanCorral-64: 303 vs. 298, and the tools

are highly complementary at verification: each tool managed to verify 225 common bench-

marks,with Symbooglix verifying 78benchmarkswhereCorral-64 reports unknown, andCorral-

64 verifying 73 benchmarks where Symbooglix reports unknown. As expected, since it was

designed for this purpose, GPUVerify is able to verify the largest number of GPU benchmarks:

403. Symbooglix and GPUVerify can verify 258 common benchmarks, with Symbooglix able

to verify 45 benchmarks where GPUVerify reports unknown, and GPUVerify able to verify 145

benchmarks where Symbooglix reports unknown.

Our results show a stronger performance from Symbooglix on the GPU suite compared with

the SV-COMP suite. We attribute this to the fact that the benchmark suite makes no use of

quantifiers (in translating OpenCL and CUDA kernels to Boogie, the GPUVerify front end uses

domain-specific strategies for avoiding quantifiers [14]), and to a process of predication ap-

plied by the GPUVerify front-end, whereby conditional code is largely flattened, reducing the

number of paths in the resulting Boogie program [26]. This predication is similar to a phi node

folding optimisation incorporated in the KLEE-CL tool [53], suggesting that this may be a use-

ful optimisation to incorporate in Symbooglix more generally.

These results partially support hypothesis 1 (see §3.1), that symbolic execution of an IVL is

competitive with other techniques. On the GPU benchmarks Symbooglix is highly competitive

given that it finds the most bugs without reporting false positives, and manages to verify a

significant number of benchmarks. Symbooglix is less competitive than the other tools on the

SV-COMP benchmarks but does show bug finding capabilities that complement the existing

tools.

3.4.6 Comparison with KLEE

Because we also apply Symbooglix to benchmarks that arise from C programs, it seems natu-

ral to compare the tool with KLEE, a state-of-the-art symbolic execution tool targeted towards

C code. Various issues make this comparison less straightforward than it might appear: due

to various engineering issues, KLEE cannot be applied out-of-the-box to the SV-COMP exam-

ples, and an apples-to-apples comparison is not possible because the Boogie benchmarks that
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Symbooglix analyses have already been translated by the SMACK front-end, which may have

changed the semantics (and shape) of the benchmarks. However, we believe that a brief com-

parison is still useful in highlighting some differences between the tools.

We took the 374 SV-COMP benchmarks used during Symbooglix’s training phase and removed

7 floating point benchmarkswhichKLEE cannot handle (Symbooglix canhandle thembecause

SMACK provides an abstraction for floating point operations). We then removed the bench-

marks where the original SV-COMP labels (i.e. those for the C programs) did not match the

labels inferred for the corresponding Boogie programs. Label mismatches between a C pro-

gram and the corresponding Boogie program generated by SMACK indicate that SMACK has

changed the semantics of the program in a manner that affects its correctness status, making

a comparison between KLEE and Symbooglix on that program meaningless or that the C pro-

gram was mislabelled. After this filtering, we were left with 361 benchmarks11, which we call

the reduced training set.

We modified12 KLEE to support the built-in verifier functions used by the SV-COMP bench-

marks and ran it on the reduced training set. This revealed several engineering issues. The

SV-COMP benchmarks are a mix of 32-bit and 64-bit C benchmarks, and KLEE only works cor-

rectly when it is compiled for a target thatmatches the compilation target for the benchmarks.

This required us to build a 32-bit and 64-bit build of KLEE to run on the 32-bit and 64-bit bench-

marks respectively. We also found that KLEE cannot run themajority of the 64-bit benchmarks,

which are based on code from the Linux kernel and use extern globals that are not initial-

ized. Symbooglix does not have these issue because the Boogie IVL is architecture indepen-

dent, and SMACK’s translation does handle extern globals. These issues illustrate a trade-off

between the levels at which the two tools operate: KLEE runs LLVM bitcode, which precisely

models system implementation details, while Symbooglix runs Boogie programs, where such

details are left abstract. The former approach is better at finding subtle implementation-level

bugs, but is more time-consuming to apply (as illustrated by the issues above). While the latter

can miss such bugs, avoiding precise system implementation details can simplify looking for

bugs that are independent from these details.

11https://github.com/symbooglix/sv-benchmarks/tree/klee_svcomp15_smack
12https://github.com/symbooglix/klee/tree/svcomp
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Table 3.3: Results for KLEE and Symbooglix on the reduced training set.

Tool Verified Bug found False alarm Unknown
Symbooglix 17 31 0 313

KLEE 10 54 1 (see text) 296

With these issues in mind: Table 3.3 shows how Symbooglix and KLEE compare in terms of

benchmark classification. Symbooglix was able to verify more benchmarks than KLEE. The

tools verified 9 common benchmarks (KLEE was faster 2/3 of the time), with Symbooglix veri-

fying 8 benchmarks that KLEE did not, and KLEE verifying 1 benchmark that Symbooglix did

not. KLEE was able to find more bugs than Symbooglix. The tools found bugs in 18 com-

mon benchmarks (in all cases KLEE found the bug faster), with Symbooglix finding bugs in 13

benchmarks that KLEE did not, and KLEE finding bugs in 37 benchmarks that Symbooglix did

not. The single false alarm reported by KLEE is, in fact, not really a false alarm: the associated

benchmark is labelled as correct, but KLEE reports an out-of-bounds memory access. The

benchmark is from an SV-COMP category in which memory-safety checking is not required.

SMACK omits array bounds checks when translating benchmarks in this category to Boogie,

but KLEE always checks array bounds and thus raises this (genuine) error. If similar issues

apply in the application of KLEE to other SV-COMP benchmarks, the number of bugs found

by KLEE in Table 3.3 might be higher than it would be if we could disable KLEE’s automatic

checks when appropriate; however, KLEE does not support disabling of these checks.

Finally, note that a useful feature of KLEE is that, on detecting a bug, KLEE can generate a

concrete input to trigger it. With engineering effort, we could extend Symbooglix to query

the SMT solver in order to generate conditions that would cause a buggy Boogie program to

fail. If the Boogie program was generated by a front-end (e.g. SMACK or GPUVerify), extra

effort, tailored to thenature of the translation intoBoogie, would be required tomap the failure

conditions for the Boogie program to a bug-triggering input in the original program.
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3.5 RelatedWork

There is a large bodyof existingwork that seeks to compareprogramanalysis techniques either

by empirically testing tools [126, 103, 8, 68, 67] that implement them or by discussing funda-

mental techniques [9, 84, 60]. In addition to the numerous publications there is also the yearly

software verification competition (SV-COMP)13 where various program analysis tools compete

on a common set of benchmarks on their performance and precision.

Kassios et al. [100] performwork closely related to our comparison. They empirically compare

symbolic execution and weakest pre-condition generation on an experimental language for

verifying concurrent programs called Chalice [117]. They compare the chalice verifier (based

on weakest pre-condition generation) with a symbolic execution tool named Syxc [96]. They

observe that over their 29 test cases symbolic execution is approximately twice as fast weakest

pre-condition generation. This is not a trend we generally observe in our work but this likely

because our set of benchmarks is substantially larger and more diverse.

As far as we are aware, ours is the first work to compare several different program analysis

techniques on the same IVL.

Symbooglix and Boogaloo are not the only symbolic execution tools applied to an IVL. Le et

al. [110] create their own IVL for verifying SystemCmodelling programs and create a symbolic

execution tool for that IVL.

All the Boogie back-ends we compare against are related work and are mainly discussed in

§2.3.4. We now discuss them in relation to our Symbooglix tool.

The Boogaloo back-end is themost similar to Symbooglix given that they both implement sym-

bolic execution. Boogaloo has superior support for quantifiers compared to Symbooglix which

handles them naively by passing them unmodified to the underlying constraint solver. How-

ever Boogaloo’s approach is unsoundwhereas Symbooglix’s approach, althoughnaive is sound.

Symbooglix could potentially adopt Boogaloo’s approach, however given our preference for

being sound we would likely look for a different approach. Boogaloo has superior test case

generation support compared to Symbooglix. It supports test case minimisation and reports

test cases to users automatically. Symbooglix on the other hand doesn’t support minimising

test cases and doesn’t provide an easy way to obtain test cases. There is no technical reason for

13https://sv-comp.sosy-lab.org/
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this limitation of Symbooglix. Symbooglix supports more of the Boogie IVL than Boogaloo be-

cause it supports the bit-vector family of types and all operations on those types. Symbooglix

is also more optimised (for our benchmarks at least) than Boogaloo because many of the op-

timisations discussed in §3.3 are not implemented by Boogaloo. One exception to this is the

map updates at concrete indices optimisation which Boogaloo handles in a some what simi-

lar manner. However as far as we know Boogaloo doesn’t try to handle symbolic map indices

that don’t alias. Boogaloo could adopt the optimisation ideas used by Symbooglix. In terms

of re-usability, Symbooglix is superior to Boogaloo because it built on top of the existing in-

frastructure that all other Boogie back-ends use whichmeans its components (e.g. its logic for

constant folding expressions) could potentially be re-used in all those back-ends. Boogaloo on

the other hand is written from scratch in Haskell and so it’s components cannot be re-used in

existing back-ends.

Symbooglix is not similar to the other back-ends because they use fundamentally different

techniques. As we have seen in §3.4.5 their performance is considerably different and in the

case of Corral and Duality complementary. This hints that some hybrid combination of the

techniques may be beneficial andmay be a potential avenue for future work [82, 24, 86]. Some

of the optimisations we implement for Symbooglix are not applicable to the other back-ends

because they are symbolic execution specific. However unique global constants constraint

representation, global dead declaration elimination, and expression simplification could be

used.

3.6 Conclusion

Wehave presented a large scale evaluation of several programanalysis tools including our own

symbolic execution tool, Symbooglix, with the goal of addressing the research problem stated

in §3.1 that no comparison of program analysis tools had been performed on an IVL.

We have also presented Symbooglix, a new symbolic execution engine for the Boogie interme-

diate verification language, and described an empirically-driven approach to optimising the

tool. Through a large experimental evaluation on two diverse benchmark suites, we find that

Symbooglix significantly outperforms Boogaloo, an existing symbolic execution tool, in terms

of applicability and analysis coverage. This supports our second hypothesis which is that the

state-of-the-art for symbolic execution of an IVL can be improved.
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The evaluation also shows that Symbooglix is competitive with GPUVerify and out-performs

other state-of-the-art Boogie analysers on a suite of benchmarks for which GPUVerify is highly

optimised. On a suite of Boogie programs derived from the SV-COMP 2015 benchmark suite,

the overall analysis capabilities of Symbooglix are lower than those of the Corral and Duality

tools, but Symbooglix is highly complementary to these tools in terms of bug-finding ability.

This partially supports our first hypothesis which is that symbolic execution of an IVL is com-

petitive with other techniques in terms of bug finding and verification.
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Chapter 4

Symbolic execution of programs using

floating-point arithmetic

4.1 Introduction

A key component underpinning any symbolic execution tool is a constraint solver, often a sat-

isfiability modulo theories (SMT) solver, which does the heavy lifting associated with deter-

mining whether execution paths are feasible at runtime, and whether there exist values of the

symbolic inputs that cause correctness conditions to fail.

Due to the challenges associated with constraint solving for floating-point arithmetic, most

symbolic execution tools do not directly support symbolic floating-point reasoning, instead

either using approximations [17], using structural equivalence of expressions as a proxy for

equality [54], or rejecting programs that use floating point as out of scope [38]. This is not

ideal because these limitations limit the applicability of symbolic execution on floating-point

programs. This is the research problem we tackle in this chapter.

Recent advances in solver technologyhave led to several SMTsolvers adding support forfloating-

point reasoning along with an effort to provide a standardised theory of floating-point arith-

metic [160]. Our hypothesis is that this standardised theory of floating-point arithmetic can be

used by symbolic execution tools to analyse floating-point programs.
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In the previous chapter we developed a symbolic execution tool (Symbooglix) that operates

on the Boogie IVL. Adding support for reasoning about floating-point arithmetic to this tool

might seem like a natural path to follow. However, this is not practical because the Boogie IVL

does not support floating-point types and operations. As a consequence supporting symbolic

execution for floating-point programs via Symbooglix would require not only modifications to

Symbooglix but also to the Boogie IVL, and to one or more existing Boogie front-ends. This

is a prohibitively large amount of engineering work because it requires non-trivial changes at

all three levels of the stack. So, instead we turn our attention to the KLEE symbolic execution

tool [38].

KLEE reasons about symbolic constraints with bit-level accuracy, and supports the entire C

language with a few exceptions, the most notable of which is symbolic floating-point arith-

metic. The original reason for the lack of floating-point support was the absence of a suitable

solver. However, LLVMIR (the intermediate representation that KLEE executes) andClang (the

C to LLVM IR front-end) both support floating-point arithmetic. This means that supporting

symbolic execution of C programs that use floating-point arithmetic via KLEE only requires

changes to KLEE; the other layers of the stack require no changes. This is substantially less

engineering work, and so this is the path we pursue in order to answer our hypothesis in this

chapter.

The open-source version of KLEE on which we base our work has very limited support of

floating-point arithmetic. This version of KLEE forces all arguments to floating-point oper-

ations to be concrete during execution, by asking the underlying constraint solver to pick sat-

isfying assignments to the arguments. This effectively means that KLEE will reason about a

single set of floating-point values on each explored path, rather than the set of all possible

values. This is an under-approximation that can cause bugs to be missed. To illustrate this

consider the C program in Listing 4.1.
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Listing 4.1: A simple C program to illustrate the limitations of open-source KLEE.
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

int main() {
float f = 0.0f;
klee_make_symbolic(&f, sizeof(f), "f");
if (f > 0.0) {

printf("f is +ve\n");
} else {

assert(f <= 0.0f);
printf("f is -ve or zero\n");

}
return 0;

}

On line 7 a floating-point variable f is declared and on the following line it is marked as a sym-

bolic variable. Next on line 9 the program branches on the value of f. On the true branch the

message "f is +ve" is printed (line 10). On the false branch an assertion ismade (line 12) and

then the message "f is -ve or zero" is printed (line 13). What happens when open-source

KLEE is run on this example? It successfully makes f symbolic but as soon as it encounters

the branch on line 9 it is forced to pick a concrete assignment to f. In this case it picks f to be

+0.0f . Now execution continues down the false path and the assert on line 12 is executed.

+0.0f <= 0.0f is true, so the assert passes, then a message is printed and the program exits.

So KLEE reports only one path and no bugs in this program. This is incorrect, the program

actually has three paths. In addition to the path that open-source KLEE found, there is a path

that takes the true side of the branch and there is a path on which the assert on line 12 fails

(i.e. a bug). When we apply our modified version of KLEE that we develop in this chapter to

this example it finds all three paths, generating a test case for each path, and reports the failed

assertion as a bug . For the path where the assert fails our version of KLEE generates a test

case where f is a NaN. This is correct because (NaN <= 0.0f) is false. This example demon-

strates how open-source KLEE’s approach to handling symbolic floating-point arithmetic is

inadequate, and that our modified version of KLEE addresses this inadequacy.

Early on in our work extending KLEE to support reasoning over floating-point constraints we

became aware of another research group at RWTH Aachen who were undertaking an iden-

tical task, namely adding support for symbolic floating-point constraints to KLEE. When we

became aware of each other’s activities (via communication on the KLEE mailing list), we set

up a meeting to understand the status and maturity of each implementation, aiming to avoid

duplication of effort. It became clear that we were too late: both teams had already invested

significant effort and created mostly complete implementations.
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This coincidence gave us a rare and valuable opportunity to empirically compare, in a very di-

rect manner, two distinct and independent implementations of the same functional specifica-

tion in the same framework, via a case study in N-version programming [10, 43]. This process

also allows us to answer our hypothesis, and in-fact strengthens the validity of our answer be-

cause we have two independent implementations that show the same result. Our results show

that while it is indeed possible to use support for the theory of floating-point arithmetic in

constraint solvers to reason about floating-point programs, several unsolved problems remain

which limit the applicability of the approach. This supports our hypothesis, but with some

caveats (see §4.5.3).

This chapter is structured as follows. First, we describe themethodology for our experimental

comparison (§4.2). We then detail the floating-point benchmarks we developed (§4.3). Next

we give a brief over of the design and implementation of KLEE (the starting point for both

extensions) and then discuss the changesmade in each of the of extensions to KLEE (§4.4). We

thendiscuss the results of our experimental comparison (§4.5) in the context of our hypothesis.

Our experimental comparison focuses on correctness and performance issues raised by cross-

checking the implementations, and what the results say about the validity of our hypothesis.

We then discuss related work (§4.6) and finally conclude (§4.7).

4.2 Methodology

On first point of contact, both teams had relatively feature-complete floating-point extensions

to KLEE that had undergone preliminary correctness testing and performance benchmark-

ing. We structured our controlled N-version programming experiment around three phases:

benchmarkpreparation (§4.2.1), benchmarkand tool improvement (§4.2.2), and in-depth com-

parison (§4.2.3).

4.2.1 Phase I: Benchmark preparation

During a period of approximately one month, each team devoted resources to independently

preparing benchmark programs to be used for evaluation. Each team prepared 43 bench-

marks, divided into 28 synthetic and 15 “real-world” benchmarks. The real-world benchmarks
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were adapted from existing open-source applications. The synthetic benchmarkswerewritten

from scratch, with some designed to test particular aspects of floating-point semantics, and

others encoding simple algorithms. The benchmarks are described in §4.3.

Both sets of benchmarks were prepared with symbolic analysis in mind: the teams ensured

that most benchmarks had at least some inputs marked as symbolic, though a few fully con-

crete benchmarks were included to thoroughly test concrete interpretation. Due to the known

limited scalability of solvers with respect to floating-point reasoning, both teams tried to re-

strict the amount of symbolic data to find a “sweet spot” where symbolic executionwould issue

interesting, yet not intractably hard, floating-point queries. Importantly, this fine-tuning was

performed by each team in isolation with respect to their own tool.

Each benchmark includes a specification stating how the benchmark should be compiled and

whether the benchmark is expected to be correct. An incorrect benchmark’s specification

states a number of expected property violations, e.g. that an assert should fail, or a division by

zero or invalidmemory dereference should occur. In each case a set of allowed error locations

(source file and line number) are provided. The schema for this specification can be found

online1. Having a specification for eachbenchmark is important because it allowedboth teams

to unambiguously communicate how the benchmark should be compiled and what property

violations it contains (if any).

During this phase, the teams were free to improve their tool with respect to their own bench-

marks. At the end of phase I, all benchmarks were pushed to a common repository.

Phase I resulted in a set of floating-point benchmarks suitable for evaluation of symbolic exe-

cution tools, with onehalf known to be somewhat tractable forAachen’s tool, and the other half

for Imperial’s tool, but importantly with no single benchmark having been prepared knowing

the capabilities of both tools.

4.2.2 Phase II: Benchmark and tool improvement

The full set of benchmarks allowed each team to assess the correctness and performance of

their independently-developed tool, through semantic problems and optimization opportuni-

ties raised by the other team’s benchmarks. Each team spent one month fixing and optimiz-

1https://github.com/delcypher/symex-fp-bench/blob/master/svcb/svcb/schema.yml
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ing their tools. Notable tool changes arising from benchmark exchange are discussed in §4.4.

During this phase the teams communicated any benchmark problems not already identified

during phase I, but did not exchange tool implementation details. These benchmark problems

are discussed in §4.5.1.

At the end of phase II, the teams froze development of their tools and exchanged source code,

enabling each team to subsequently (a) understand the design decisions of the other team via

source code inspection, and (b) compare experimentally with the other team’s tool.

4.2.3 Phase III: In-depth comparison

The teams now set about comparing the tools on the finalized benchmarks. Since both teams’

tools leveragedZ3 andLLVM, itwas agreed that both should share the sameZ3version (4c664f1c)

and LLVM version (3.4.2) so as to restrict behavioural differences to design decisions in the

KLEE extensions themselves, rather than in their dependencies.

Tool changes based onpreliminary experiments. Our intent had been to conduct our in-depth

comparison using exactly the tool versions frozen at the end of phase II. However, preliminary

experiments revealed a number of remaining tool bugs that were easy to fix, and whose fixes

werenot influencedby implementationdetails of the opposite team’s tool. Wealso realised that

the tools were forked from different versions of KLEE, leading to potential behavioural dif-

ferences unrelated to the innovations of each team. Finally, a dynamic solver timeout feature

(§4.4.2), implemented by Imperial and orthogonal to floating-point support, allowed KLEE to

terminate in a more reliable manner that influenced tool comparison. Based on this experi-

ence, weupgradedboth tools by rebasing to use a commonKLEE revision (2852ef63), donating

the dynamic solver timeout feature to Aachen, and applying a number of bug-fixes following

an inter-team review to confirm that fixes were not inspired by details of the opposite tool.

Onefix that isworthdiscussing is a change tohow theZ3 solverwas instantiated (Z3_mk_solver()

vs Z3_mk_simple_solver()). It was discovered that the array ackermannization optimisation

was not causing the intended effect when Z3_mk_simple_solver()was being used, leading to

sub-optimal performance. However when the other solver API call was used the optimization

worked as intended. The reason for this is that Z3_mk_simple_solver()) bypasses all of Z3’s

logic-specific strategies and uses the DPLL(T ) [143] method (lazy translation to SAT) of solving

constraints. This is frequently slower than using Z3’s logic-specific strategies. In particular
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the array ackermannization optimization turns queries in the logic of quantifier free arrays of

bit-vectors (QF_ABV) into the logic of quantifier free bit-vectors (QF_BV).When Z3_mk_solver()

is used and the logic in the query is QF_BV Z3 applies a strategy that uses eager bit-blasting to

SAT [104]—in place of the frequently slower DPLL(T )-based approach2.

Unfortunately, this issue was discovered after phase II and Aachen did not agree with integrat-

ing this change into the tools. As a result the paper version [123] of this work discusses the

version of the tools that uses the sub-optimal Z3 API call. However in this chapter our end

goal is to answer our hypothesis, and we should try to answer the hypothesis using the most

performant versions of the tools. Therefore in this chapter wewill use the versions of the tools

that use the solver API that leads to better performance.

Running the tools. We ran the finalised versions of both teams’ tools on the finalised bench-

mark suite, on a machine with two Intel® Xeon® E5-2643 v4 CPUs (6 physical cores each) with

256GiB ofRAMrunningArchLinux. Hyper-threading and turboboostwere disabled. Each tool

was run 20 times per benchmark. Each tool was executed in parallel over the set of bench-

marks, running on at most 8 benchmarks in parallel. Each KLEE process was pinned to a sin-

gle CPU core and the CPU’s nearest NUMAnode. The CPU cores used for pinningwere isolated

from the kernel scheduler using the isolcpus kernel parameter. The pstate CPU governor was

set to “performance” requesting the same min/max frequency (3.5GHz) and a 0 performance

bias. We enforced a 100 GiB memory limit per KLEE process, enforcing that the swap file was

not used. Each tool was executed in a Docker [132] container to keep the processes isolated.

Address space layout randomisation (ASLR) was disabled.

KLEE has two distinct execution phases: a path exploration phase followed by a final test case

generation phase. We enforce a time limit of 1 hour for each phase.

Each team’s tool was configured to use the same path exploration strategy (non uniform ran-

dom search prioritizing coverage, with a fixed random seed).

Comparing the tools. In order to compare the tools we extracted the following information

from each run.

The validity of a reported bug, i.e. whether it is a true or false positive. A test case that detects

a particular issue at a certain benchmark source location is considered to detect a true positive

if and only if the benchmark’s specification indicates that an issue of this type is expected at
2https://github.com/Z3Prover/z3/issues/1251
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that location. Checking validity was achieved by replaying KLEE-generated cases natively for

reported bugs and verifying that the bug type, source file and line number match what KLEE

reported. Checking for expected assertion failures and calls to abort() required no special

instrumentation. To check for out-of-boundmemory accesses anddivisionby zero—undefined

behaviours in C that are not guaranteed to raise a runtime exception—we instrumented the

benchmarks using AddressSanitizer [163] and UndefinedBehaviorSantizer [173] respectively.

Branch coverage achieved on each benchmark. This was measured by replaying all KLEE-

generated tests natively on a coverage-instrumented (via gcov [78]) build of the benchmarks.

Coverage excludes the C library to avoid bias; e.g. a team’s tool might interpret a C library

function (may lead to additional test cases) rather than modelling it in Z3 (no additional test

cases), possibly leading to greater coverage of the C library which upon replay could inflate the

team’s coverage artificially.

Although KLEE has its own internal counters to track the achieved coverage it was decided

to not use this information because this information could be wrong (intentionally or unin-

tentionally). Using the coverage achieved by replaying KLEE generated test cases avoids this

problem.

Execution time and crashes. We recorded execution time for each run of a tool on a bench-

mark, and noted caseswhere a tool crashed due to an internal error or running out ofmemory.

Memory and time limits of 10 GiB and 5 minutes respectively were used when replaying test

cases.

Due to the insufficient coverage support in Clang 3.4.2, GCC 6.2.1 (optimisations enabled) was

used to compile benchmarks for replay.

We merged the repeated runs of the same tool configuration as follows. The true and false

positives for a tool with respect to a benchmark were identified by replaying the test cases

generated across all runs, crediting a tool for finding a true positive during any run, but sim-

ilarly penalising for any instances of false positives. We computed branch coverage and exe-

cution time for a tool with respect to a benchmark as the arithmetic mean across all runs. We

counted the number of crashes for a tool with respect to a benchmark as the total number of

crashes observed across all runs.

We then ranked the tools on a per-benchmark basis using the following rules, applied in order:
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(A) A tool wins if it reports no false positives and the other tool reports at least one false
positive.

(B) Most true positives wins.

(C) Highest mean branch coverage wins.

(D) If at least one tool crashed, smallest crash count wins.

(E) Otherwise, smallest mean total execution time wins.

The tools draw if they are not distinguished by these rules. The rationale for ranking is: a

symbolic execution tool should never exhibit false positives (A), because its primary goal is

to accurately find bugs (B), with a secondary goal of producing a high-coverage test suite (C).

Thereafter, we prefer a tool that does not crash (D), and a fast toolwhenneither crashes (E). It is

hard to meaningfully compare false positives (two distinct false positives might not be equally

serious), so in (A) we do not rank tools by number or nature of false positives.

When comparingmeanbranch coverage and execution timeweuse 95%and 99.9%confidence

intervals, respectively, regarding results as indistinguishable if intervals overlap. Mean execu-

tion time differences of less than one second are also treated as indistinguishable.

4.3 Benchmark suite

As mentioned in §4.2.1 both teams independently contributed 43 benchmarks (86 in total),

written in C99 [94] or C11 [95]. Each team aimed to choose examples that would be challeng-

ing yet not intractable for symbolic execution, being free to choose benchmarks that played to

the strengths of their tool, with benchmarks prepared by the other team posing an unknown

challenge. The suite contains 52 benchmarks expected to be correct and 34 expected to be in-

correct. The suite uses KLEE-specific functions (e.g. to introduce symbolic data) for our conve-

nience, however it would be easy to port the benchmarks to a more popular interface (e.g. the

SV-COMP interface [55]) so that the benchmarks are applicable to other analysis tools. Branch

counts reported below are the number of static branches in the compiled LLVM IR.

The infrastructure for building thebenchmarks canbe foundathttps://github.com/delcypher/

symex-fp-bench.
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4.3.1 Aachen’s benchmarks

These benchmarks can be found at https://github.com/danielschemmel/fp-benchmarks-

aachen.

Synthetic (17 correct, 11 incorrect): These focus on checking a wide range of floating-point

semantic features, split up so that each benchmark tests as few individual features as possible,

allowing floating-point symbolic execution errors to be easily pinned to underlying causes.

Some check properties that are uncommon in real-world programs, to ensure that unusual

and erroneous uses of floating-point numbers are handled accurately. These benchmarks have

between 1 and 56 (median 3) branches and request between 0 and 32 (median 8) symbolic

bytes.

Realworld (13 correct, 2 incorrect): Theseweredrawn frommultiple publicly available sources,

with care taken to include both large and well-tested software, reflected by benchmarks built

upon the GNUMultiple Precision Arithmetic Library3, and sample programs not intended for

production use, e.g. numerical code taken from [152]. These benchmarks have between 6 and

2903 (median 220) branches and request between 1 and 20 (median 8) symbolic bytes.

4.3.2 Imperial’s benchmarks

Thesebenchmarks canbe foundathttps://github.com/delcypher/fp-benchmarks-imperial.

Synthetic (15 correct, 13 incorrect): These comprise simple algorithms (e.g. binary search),

and tests for fundamental properties of floatingpoint (e.g. commutativity andnon-associativity

of addition). We include a port ofWilliam Kahan’s paranoia benchmark [99, 98]. These bench-

marks have between 1 and 301 (median 8) branches and request between 0 and 128 (median 8)

symbolic bytes.

Real world (7 correct, 8 incorrect): These were written against the GNU Scientific Library4

(libGSL), adapted from tutorial examples includedwith the library source code. Creating these

benchmarks involved iteratively increasing the presence of symbolic input, stopping just be-

fore the tipping point beyondwhich Imperial’s tool could notmake reasonable progress. Some

of the libGSL benchmarks used long doubles, a feature that Imperial’s early tool did not sup-

3http://gmplib.org/
4https://www.gnu.org/software/gsl/
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port; we modified the associated benchmarks to avoid long doubles. These benchmarks have

between 6 and 254 (median 67) branches and request between 4 and 48 (median 16) symbolic

bytes.

4.4 Design Details

We first discuss the high-level architecture of KLEE which is the same in both tools and then

discuss notable similarities (§4.4.1) and differences (§4.4.2) in design decisions made by both

teamsasdeterminedby source-code examination. The source codeof the Imperial andAachen

tools are available at https://github.com/srg-imperial/klee-float and https://github.

com/COMSYS/klee-float respectively.

Figure 4.1: Architecture of KLEE.

Figure 4.1 illustrates the high-level architecture of KLEE. A program (in our case a C program,

possibly linkingwith several libraries) is compiled to LLVM IR bitcode. This is then parsed into

LLVM IR and then given to the executor to execute. The executor is the core of KLEE, it inter-

prets the LLVM IR and coordinates all actions that result from this interpretation. Before it is

able execute the program it links the program against several runtime libraries (e.g. C library).

The executor then sets up the initial execution state (e.g. heap, global, and stack memory; and

path constraints) and then gives that state to the state scheduler. The state scheduler stores

each execution state (each corresponds to a feasible path in the program) and decides which

execution state the executor should run next. As the executor runs it will use the expression li-
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brary to construct expressions to represent the state ofmemory and constraints. When the ex-

ecutor needs to check the feasibility of a path it invokes the Solver to check a set of constraints

that are represented using expressions that were created using the expression library. KLEE

supports multiple constraint solvers but in our work we use the Z3 constraint solver which is

why it is shown inside the solver component. If a path terminates the executor generates a test

case for it and if the path terminates due to a bug it also emits a bug report. This description of

KLEE is grossly over simplified but is sufficient to understand the work in this chapter because

all the important components that were modified by the two teams are shown in the figure.

At the end of phase II (§4.2.2) we exchanged tool source code, allowing comparison of tool

designs that had previously been unknown across teams.

Exchanging benchmarks at the end of phase I clearly led to improvements in the design of both

tools. We consider this a positive outcome, illustrating how a shared set of independently-

gathered benchmarks can drive tool development.

4.4.1 Notable similar design decisions

We discuss design issues where both teams took similar approaches, highlighting noteworthy

differences in the details.

Constraint solver. Both teams used Z3 [140] as the constraint solver; this was a natural choice

as Z3 supports floating point and was already integrated into open-source KLEE.

Floating-point types, operations and functions. KLEE is primarily designed to execute pro-

grams written in C, but actually executes LLVM intermediate representation (IR). Both teams

assumed the x86_64 target and thus that the float, double, and x86_fp80 LLVM types map to

the IEEE-754 fp32, fp64, and x86_fp80 types. Assumption of IEEE-754 semantics was key, as

they are used by the SMT-LIB floating-point theory [34] that Z3 implements.

Both teams assumed that the primitive arithmetic LLVM IR instructions (e.g. fadd) map to

corresponding IEEE-754 operations, except for frem, whose semantics are not the same as

the IEEE-754 remainder function [131]. Both teams assumed that operations on LLVM types

consistently use the same precision and range, so that excess precision/range are not used
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during computation. This assumption holds if during native code generation the compiler

uses SSE instructions (rather than the legacy x87 FPU) to do floating-point computations on

fp32 and fp64 types [137].

Vector instruction support. LLVM IR provides vector types derived from the basic floating-

point types; enabling compiler optimizations can cause vector instructions to be emitted. To

process these, both teams adapted LLVM’s Scalarizer pass to scalarize as much as possible

prior to symbolic execution, so that KLEE can assume that most instructions (e.g. fadd) only

take scalar operands. A few instructions—InsertElement, ExtractElement, andShuffleVector—

required special handling; both teams added varying levels of support, sufficient to run the

benchmarks (§4.3).

It is worth noting that at the end of phase I, Aachen and Imperial’s support for vector instruc-

tions differed greatly. Imperial compiled their benchmarks with optimizations enabled, ne-

cessitating vector support; Aachen compiled their benchmarks without optimizations, thus

did not need vector support. During phase II it became necessary for Aachen to add vector

support in order to handle Imperial’s benchmarks.

IEEE-754 roundingmodes. Both teams implemented support for all IEEE-754 roundingmodes

available from the C standard library interface, by having a per-execution state flag that stores

the current concrete rounding mode and ensuring that this is used when constructing con-

straints (e.g. floating-point addition is affected by the rounding mode, making it a ternary op-

erator). KLEE has the ability to call external functions—functions missing from the program

under analysis that can nevertheless be executed by the running KLEE process on behalf of the

program under analysis. Both teams ensured that when calling external functions the round-

ing mode of the KLEE process is changed to that of the calling execution state and reverted

back on return. One slight difference in Imperial’s implementation is that the rounding mode

is allowed tobe symbolic, whereasAachen’s implementation concretizes a symbolicmode. Im-

perial’s implementation achieves this by forking on symbolic rounding modes (i.e. one path

per rounding mode plus an extra path for an invalid rounding mode).

Standard math functions. The teams initially used different approaches for handling C stan-

dard librarymath functions. Aachen represented these functionswhere possible as operations

in KLEE’s constraint language (e.g. fabs, sqrt) and interpreted UClibc’s implementations for

other functions. However, Imperial simply interpreted the implementation for all math func-
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tions in UClibc’s C library. Imperial’s approach suffers from path explosion when operands to

the functions are symbolic. Upon exchanging benchmarks at the end of phase I, Imperial dis-

covered their tool performed poorly on several of Aachen’s benchmarks due to path explosion

and so switched to handling fabs and sqrt as operations in KLEE’s expression language. Both

teams had to add UClibc’s math library to the list of KLEE’s runtime libraries because open

source KLEE does not link with it.

IEEE-754 exceptions and flags. Neither team implemented this portion of the IEEE-754 spec-

ification because it would significantly complicate symbolic execution: one would need to

maintain the symbolic value of the flags and check if any exceptions could be raised by every

floating-point instruction executed. A consequence of this (and of the SMT-LIB floating-point

theory) is that symbolically neither tool can distinguish between quiet and signaling NaNs.

4.4.2 Notable differences

Extending KLEE’s expression language. Both teams extended KLEE’s expression language to

incorporate floating-point expressions in similar ways, but with some notable differences re-

lated to how comparison operations and constants are handled. Aachen added operations that

correspond directly to the opcodes of the LLVM FCmp instruction. The instruction has ordered

and unordered variants, which return false and true, respectively, if either argument is a NaN.

Instead, Imperial only added operations that correspond to the ordered comparison opcodes

because the unordered operations canbe expressed in terms of the ordered comparison opera-

tions and the IsNan predicate. We consider Imperial’s approach to be a better choice because it

is a simpler extension to KLEE’s expression language. Aachen represented floating-point con-

stants as a separate expression type whereas Imperial represented floating-point constants as

implicitly bitcasted integer constants.

Representation of types. KLEE’s expression language is based solely on bit-vectors, which

was problematic when introducing floating-point operations. Imperial handled this by mak-

ing conversion between floating-point and bit-vector types implicit, so that e.g. the bit-vector

operands to a floating-point add instruction are first converted to floating-point types. Aachen

instead made this explicit by introducing type conversion operations. We consider Aachen’s
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choice to be superior here because implicit conversion has ambiguities. In particular if an if-

then-else expression has a mixture of bit-vector and floating-point types for its then and else

expressions, the type of the if-then-else is ambiguous.

Array ackermannization. KLEE represents all symbolic data, including primitive symbolic

variables, as arrays of 8-bit bit-vectors. Imperial observed that in a floating-point context, if

all arrays of bit-vectors are replaced with simple bit-vector variables and given to Z3 in such

a way that the new query is equisatisfiable with the original query, then performance usually

improves. We refer to this transformation as array ackermannization. The Z3 developers con-

firmed this, suggesting that Z3 is not currently well-optimized for queries mixing the theory of

quantifier-free bit-vector arrays with the theory of quantifier-free floating point5.

Imperial’s tool performs array ackermannization in the case where all array reads are at con-

crete indices and no writes have been performed to the array. This is a fairly common case be-

cause symbolic variables in the original C program being analysed are typically represented

as a concatenation of byte reads at successive concrete indices of a symbolic array. Aachen’s

tool does not implement array ackermannization.

x86_fp80 support. At the end of phase I, only Aachen added support for x86_fp80 and bench-

marks to exercise it. Thus during phase II it became necessary for Imperial to implement sup-

port for symbolic reasoning over this type too.

Our designs differed due to several characteristics of the x86_fp80 type. First, it is a padded

type: its 80 bits are padded to 128 bits on x86_64, and KLEE does not handle such padding

properly. Both teams handled this issue in the same way, making sure KLEE allocates the

necessary padding during the allocation of x86_fp80 stack and global variables.

Second, because x86_fp80 is not an IEEE-754 binary type, constant folding expressions of this

type required careful consideration, and expressions of this type could not be directly mod-

elled in the SMT-LIB floating-point theory.

KLEE already had support for constant folding the x86_fp80 type via LLVM’s APFloat class,

which performs arbitrary precision floating-pointing arithmetic in a hardware independent

manner. However, one of Aachen’s benchmarks caused both teams to discover that APFloat

has a bug6 where unnormal operands are not handled correctly. Imperial solved this issue by

5https://github.com/Z3Prover/z3/issues/577
6https://bugs.llvm.org/show_bug.cgi?id=31294
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evaluating all x86_fp80 operations natively within KLEE itself. Aachen solved this by storing

a flag in every expression which is set to true iff the expression represents a member of one

of the IEEE-754 classes. When the value is accessed through a x86_fp80 operation, this flag is

examined and if it is false for any operands a NaN is returned, which mirrors how unnormal

operands are treated on x86_64. A fix for the bug in APFloat would avoid the need for these

workarounds.

To handle evaluating symbolic expressions over x86_fp80 with Z3, both teams used the

(_ FloatingPoint 15 64) type (abbreviated as z3_fp79) which has a 15-bit exponent, a 64-bit

significand, and an implicit integer significand bit. It has exactly the same range and precision

as x86_fp80, but uses a different 79-bit binary encoding due to the SMT-LIB floating-point the-

ory only being able to represent IEEE-754 classes. The different binary encoding requires spe-

cial handling of conversions between a bit-vector that represents x86_fp80 data and z3_fp79.

Imperial chose to only allow the IEEE-754 classes of the x86_fp80 type. When converting to

z3_fp79 from a bit-vector the explicit leading significand bit is removed and an additional con-

straint is added that asserts that the bit has the correct value for the bit-vector to represent an

IEEE-754 value. When converting a z3_fp79 to a bit-vector, the explicit leading significand bit

is added back and its value is inferred from the other bits to be an IEEE-754 value.

Aachen chose to allow the non IEEE-754 classes of the x86_fp80 type in addition to the IEEE-

754 classes. This was achieved by representing expressions of the x86_fp80 type as a tuple.

The first value in the tuple is of type z3_fp79. The second value is a boolean flag that is true

iff the value represented by the tuple belongs to one of the IEEE-754 classes. These tuples are

then handled by each floating-point operation. If one of the tuple operands does not represent

a value from one of the IEEE-754 classes it returns the tuple (NaN, true).

Imperial’s implementation results in simpler constraints being given to Z3 but is incomplete.

Aachen’s implementation is complete but the constraints are more complicated and also con-

tradict the goals of array ackermannization because the tuple is represented as a two element

array.

Dynamic solver timeout. Although KLEE can limit the time allowed for path exploration be-

fore switching to test case generation, KLEE does not try to interrupt the solver if the path ex-

ploration timeout is reached. For long-running solver queries—especially frequent when us-
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ing floating-point constraints—this can cause the path exploration timeout to fire much later

than intended. This leaves less time for test case generation (see §4.2.3), and may cause test

cases to be lost.

KLEE supports setting a fixed (i.e. static) solver timeout, but this does not interact well with the

path exploration timeout. A small solver timeout may leave paths unexplored despite there

being available time for further path exploration, while too large a timeoutmay cause the path

exploration timeout to be missed as discussed above.

Imperial implemented a dynamic approach to solve this problem. Every time the solver is

invoked, the per-query solver timeout is set based on KLEE’s current state. If KLEE is doing

path exploration, the solver timeout is set to be the remaining path exploration time. When

KLEE switches to test case generation, the solver timeout is set to the total allowed time for

test case generation divided by the number of test cases to generate. This means that each test

case is given an equal share of solver time.

While Aachen did not originally implement such a feature, as noted in §4.2.3, to ensure com-

patibility this feature was donated to Aachen’s implementation.

NaN representation. Neither tool can distinguish between quiet and signaling NaNs. IEEE-754

does not precisely specify the binary encoding for either of theseNaNs, whichmeans there are

many different encodings that represent the same type of NaN. Therefore, when converting

a floating-point expression to a bit-vector expression, if it is feasible for the expression to be

NaN, it means the converted bit-vector expression can take on many values that all represent

NaN. In practice this is rarely a problem, however one of Imperial’s synthetic benchmarks

deliberately tries to branch on the value of the lower-order bits of a NaN, whose value is not

defined by IEEE-754.

During phase II, Imperial discovered that this would sometimes crash their implementation

due to inconsistent constraints. This was partly due to some bugs in Z37 and LLVM’s APFloat8.

This was caused by Z3 giving amodel whichwhen substituted into KLEE’s expression language

would be unsatisfiable (even though Z3 claimed themodel was satisfiable in its own constraint

language). We refer to this as “inconsistent constraints”. There were two causes for this. First,

sometimes Z3 would generate invalid models. This issue was reported9 and fixed by Z3’s de-

7https://github.com/Z3Prover/z3/issues/740
8https://bugs.llvm.org/show_bug.cgi?id=30781
9https://github.com/Z3Prover/z3/issues/740
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velopers. Second, there is an inconsistency between KLEE’s and Z3’s expression languages

when handling NaNs, which is partly due to a bug10 in LLVM’s APFloat which is used to eval-

uate KLEE’s expression language under a given model. Imperial mitigated this issue by doing

two things. First, using a Z3 configuration option to always use the same binary representa-

tion for NaNs (quiet NaN, where all significand bits except the least significant are zero) when

casting floating-point expressions to bit-vector expressions. Second, ensuring that KLEE’s ex-

pression language used the same binary representation for NaN as Z3 during constant folding.

However this is not ideal because it means that during concrete execution it is only possible to

have one bit pattern represent NaN, whereas during real executionmany different bit patterns

could represent NaN. Unfortunately the under-specified nature of IEEE-754 NaN bit patterns

are a general problem. Even if KLEE’s expression language was modified to have identical se-

mantics to Z3, they may still differ from those of the target machine or other SMT solvers.

4.5 Experimental Comparison

In this section we turn to the comparison of the tools. First, we discuss problems with the

benchmarks flagged by tool comparison (§4.5.1), and then the results comparing the finalized

tool versions head-to-head during phase III (§4.5.2). Then we discuss the validity of our hy-

pothesis in the context of our results (§4.5.3). Finally, we discuss threats to the validity of our

work (§4.5.4).

4.5.1 Benchmark issues

Non-termination. When replaying tests generated by the tools (to gather coverage informa-

tion and check that reported bugs are reproducible) we found that two benchmarks1112 did not

terminate for certain inputs. In one case this was unintentional, due to a bug in the implemen-

tation of a binary sort algorithm used by the benchmark. We did not fix these benchmarks for

our comparison because neither the benchmark specifications nor KLEE are concerned with

non-termination bugs. We handled these cases by setting a timeout when replaying test cases

10https://bugs.llvm.org/show_bug.cgi?id=30781
11https://github.com/delcypher/fp-benchmarks-imperial/issues/13
12https://github.com/delcypher/fp-benchmarks-imperial/pull/12
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(see §4.2.3). Due to gcov implementation details [78], branch coverage is not recorded for non-

terminating tests. This affected only a few benchmarks and gave neither tool an advantage in

our ranking scheme.

Unnormal values. We found several problemswith a benchmark that operated on the x86_fp80

type, involving unnormal values (see §2.5). First, Clang would incorrectly optimize the bench-

mark by performing erroneous constant folding13. We thus disabled optimizations for this

benchmark. We also discovered it is possible to exploit this problem to crash Clang14. Sec-

ond, we found that several operations on unnormal numbers used in this benchmark be-

haved inconsistently across compilers (e.g. isnan() and casting to integers). We concluded

that this was due to these operations exhibiting undefined behaviour, and removed them from

the benchmark. Their removal did not otherwise affect this synthetic “torture test” bench-

mark.

The remaining issues are cases where our tools found a benchmark to be incorrect, contrary

to its specification; for each issue we applied a simple fix:

Failing to account for NaNs. A benchmark that sorted an array of partially symbolic floating-

point valueswas incorrectwhen infinity valueswere added to yieldNaNvalues, later triggering

an assertion failure when checking correctness of sorting. A benchmark performing matrix

multiplication on a partially symbolic matrix was similarly incorrect. We fixed these issues by

adding assumptions that inputs are not infinities or NaNs, respectively.

Failing to account for scientific notation. A benchmark that verifies the output of atof()15 in-

tended to constrain the characters of the symbolic input string to represent a small decimal

value, asserting that the result of atof() was in the expected range. The input constraints ac-

cidentally allowed scientific notation (e.g. 1e10), so that atof() could generate a value outside

the expected range. We fixed this by only enforcing the assertion when the symbolic input

string did not contain scientific notation.

13https://bugs.llvm.org/show_bug.cgi?id=31294
14https://bugs.llvm.org/show_bug.cgi?id=31292
15Converts a string to a floating-point value.
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Failing to take poor approximation into account. A benchmark that checks the result of
√
x2,

where x is a symbolic floating-point value, did not account for denormal numbers. As the com-

putation may cause a gradual underflow to a denormal number, its precision may be reduced

to a single bit in the worst case, causing a very high relative error. We fixed the benchmark by

changing its specification to state that there exists a failing path.

4.5.2 Head-to-head tool comparison

Tool ranking. Table 4.1 summarizes the number of benchmarks for which each team won,

according to the procedure for ranking tools as described in §4.2.3.

Table 4.1: Ranking of the tools. Each count shows the number of wins for a tool except the last
row which shows the number of draws.

Reason Aachen Imperial
Other tool has false positives 0 0
Finds more bugs 0 7
Highest branch coverage 0 8
Fewest crashes 0 2
Smallest execution time 1 34
Draws 34

Neither tool reported false positives. For seven benchmarks Imperial found more bugs than

Aachen. In cases where the tools found the same number of bugs, Imperial achieved higher

branch coverage in eight cases. In six of these cases, Imperial achieves more coverage than

Aachen because Aachen’s tool crashes when trying to generate some of its test cases, whereas

Imperial’s tool doesn’t crash and successfully generates all its test cases. In one case, Imperial

achieves more coverage because it is able to explore more of the program. Finally, in one case

Imperial achieves more coverage due to an artifact of the program under execution and the

path exploration order used by the tools. The programconsists of two sequential if statements

(that both perform an early exit) and then an infinite loop. Imperial’s tool generates a test

case that takes the false branch of the first if statement and then true branch of the second

if statement which then triggers the program to exit. Aachen’s tool generates a test that take

the true branch of the first if statement which then triggers the program to exit and so doesn’t

execute the second if statement. Imperial’s test case covers more branches and so is awarded

more coverage. Each tool should actually generate a test case that the other tool generates

however they both spend the rest of their time stuck executing the infinite loop.
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For benchmarks where the tools were as-yet indistinguishable, there were two cases where

Imperial’s tool did better due to Aachen’s tool crashing. The crashes here are internal to Z3

which have been reported16. There were 35 cases where neither tool crashed but where the

tools were distinguished by execution time, with Aachen and Imperial winning 1 and 34 times,

respectively. Of the 34 draws, all are due to the execution times of the tools being considered

indistinguishable (the confidence intervals associated with mean execution time overlap or

the difference in the mean execution time is less than one second).

What these results show is that in almost all cases, Imperial’s tool either outperforms (51bench-

marks), or has indistinguishable performance (34 benchmarks) to Aachen’s tool. The main

reason for these performance differences is the array ackermannization optimisation that Im-

perial’s tool implements combinedwith the correct Z3 solver API call tomake the optimisation

work correctly (see §4.2.3). Without this, the performance of the tools is very similar [123]. The

one benchmarkwhereAachen ismore performant is due to the performance of the underlying

constraint solver. Both tools send different (but equisatisfiable) constraints to Z3 during sym-

bolic execution and Z3 determines satisfiability faster with Aachen’s version of the constraints.

While these results are encouraging they do not allow us to answer our hypothesis because the

results are a relative comparison. For that we need to look at different metrics, which we do

now.

Tool complementarity and limitations. The results so far show that Imperial’s tool almost

always outperforms Aachen’s tool. We now examine the extent to which the tools are capable

of effective analysis of our benchmarks, whether they are hindered by commonproblems, and

cases where they are complementary.

Table 4.2 shows the extent to which each tool is capable of correctly finding bugs in the bench-

marks. The T+ row shows, for each tool, the number of total bugs found, out of the number

of bugs expected to be present from the benchmark specifications (in the 34 benchmarks with

erroneous paths we expect to find a total of 49 bugs). The T− row shows, for each tool, the

number of bug-free benchmarks (52 total) that the tool is able to fully explore. That is, all

feasible paths are enumerated so that correctness is exhaustively verified. In each row, tool

complementarity is indicated by showing the extent to which bugs can be found, or correct-

ness proven, by both tools or by neither tool.

16https://github.com/Z3Prover/z3/issues/1251
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Table 4.2: Evaluation of the tools in terms of bug-finding, exhaustive exploration, number of
crashes and number of timeouts. The T+ and T− rows show the number of true positives and
true negatives respectively.

Aachen Imperial Both Neither
T+ 34 (69.39%) 43 (87.76%) 34 (69.39%) 6 (12.24%)
T− 35 (67.31%) 39 (75.00%) 35 (67.31%) 13 (25.00%)

Crashes 10 (11.63%) 0 ( 0.00%) 0 ( 0.00%) 76 (88.37%)
Timeouts 20 (23.26%) 18 (20.93%) 15 (17.44%) 63 (73.26%)

Imperial’s tool finds more bugs (T+) than Aachen’s tool and actually finds a superset of the

bugs that Aachen’s tool finds. Imperial’s tool finds the majority (87.76%) of the bugs in the

benchmark suite. However Imperial’s tool misses six bugs (across four benchmarks) due to

the tool reaching a timeout, showing that the tool has limitations.

Both the Imperial andAachen toolsmanage to verify (exhaustive explorationwithout any bugs)

the majority of the benchmarks, with Imperial’s tool verifying a superset. However Imperial’s

tool fails to verify six benchmarks due to the tool reaching a timeout, again showing that the

tool has limitations.

In terms of tool crashes, Imperial’s tool does not crash on any of the benchmarks, whereas

Aachen’s tool crashes on ten of them. For two of these benchmarks, the crash is an internal Z3

issue17, the others are due to KLEE detecting inconsistent constraints (see §4.4.2, NaN repre-

sentation) and aborting.

Finally, in terms of timeouts both tools reach timeouts, with Imperial’s tool hitting timeouts for

slightly fewer benchmarks. Upon examination of these benchmarks (aside from the bench-

mark that does not terminate) the reason for hitting the timeout is not path explosion but the

performance of the constraint solver. Over all benchmarks, ourmodified KLEE tools spend on

average over 99.9% of their time waiting for the underlying constraint solver to return an an-

swer. This shows that the limitations in our tools are primarily caused by the inadequate per-

formance of the constraint solver.

17https://github.com/Z3Prover/z3/issues/1251
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4.5.3 Validity of hypothesis

Recall from §4.1 that we wished to investigate our hypothesis which is that the standardised

theory of floating-point arithmetic can be used by symbolic execution tools to analyse floating-

point programs. Our tools and results support this hypothesis. However there are somecaveats

to this.

First, the performance of our tools are limited by the performance of the underlying constraint

solver and in a significant number of cases (i.e. our tools reach a timeout) the performance is

inadequate. Given that Z3’s strategy for solving floating-point constraints is to bit-blast [104]

to a SAT problem, the performance problems are not unexpected. The authors of CBMC have

commented [35] that the approach is intractable in practice due to the size of SAT formulas

generated. Addressing this problem is a potential avenue for future work, which we follow

in Chapter 5. To encourage the improvement of constraint solvers in this area, we have col-

lected 35,189 queries (18,033 in the existing QF_FPBV division and 18,033 into a new QF_ABVFP

division18) fromour tools and contributed them to the annual SMT-COMPsolver competition.19

Second, the theory of floating-point arithmetic has some design issues that make it difficult to

symbolically execute some aspects of the IEEE-754 standard in programs. The theory does not

distinguish between signaling and quiet NaNs; does not provide a convenient way to model

IEEE-754 exceptions; and does not provide a convenient way to model x86_fp80. We believe

that all these issues could be worked around but at the cost of creating very complicated con-

straints. We have not experimentally verified this (apart from the x86_fp80 issue) and so leave

this as future potential work.

Finally there is the risk that our benchmarks do not accurately represent real world programs.

We have done our best to minimise this risk and discuss this more in §4.5.4.

4.5.4 Threats to validity

Our study has both internal and external threats to validity. Both tools use KLEE and Z3, so er-

rors in these componentsmay lead to bugs that go undetected when comparing the two imple-

mentations. However, themanual effort we put intowriting specifications for the benchmarks

renders this risk minimal.
18https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_ABVFP
19http://cs.nyu.edu/pipermail/smt-comp/2017/000436.html
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Since both our tools were built on top of KLEE and Z3, our respective design decisions might

be more similar than they would be had different frameworks been used. However, we found

that in spite of this common infrastructure, building the extensions required important design

decisions that resulted in significant differences. Moreover, having a common infrastructure

made it possible to conduct a rigorous comparison that would not have been possible other-

wise.

Our benchmarks might not be representative of floating-point code found in large deployed

applications. However, our synthetic benchmarks aremeant to systematically test challenging

floating-point features that real applications would exercise, while our real-world benchmarks

are based on existing applications or widely-used libraries.

Finally, due to the computational complexity of floating-point constraint solving, all bench-

marks contain comparatively few floating-point operations and symbolic data. This is due to

the fact that constraint checking large numeric applications is currently infeasible in the pres-

ence of floating-point numbers.

4.6 RelatedWork

There is a large body of existing work that performs analysis of floating-point programs. This

was previously discussed in §2.5.3. Themost similar work to ours are those that try to symbol-

ically execute floating-point programs.

Quan et al. [154] extend KLEE to support symbolic execution of floating-point programs. Their

extension relies on linking against a software implementation of IEEE-754 floating-point arith-

metic (i.e. a soft float library). This effectively bypasses the lack of support for floating-point

constraints in KLEE by re-expressing all floating-point constraints as bit-vector constraints.

This allows them to use KLEE’s existing constraint solver to check the satisfiability of path con-

straints. In contrast, our approach adds first class support for floating-point constraints inside

KLEEanduses the theory of floating-point arithmetic [161] available in the Z3 constraint solver.

We believe our approach is superior for several reasons. First, using a softfloat library adds ad-

ditional paths to explore, due to branch conditions in the soft float library. In our experience

this is bad for performance and actually caused us to redesign our tools (see §4.4.1) to avoid

this where possible. Second, not having floating-point expressions in path constraints means
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that it is not possible to take advantage of floating-point specific improvements in constraint

solvers, such as the work we undertake in Chapter 5. We have not empirically compared our

approaches because their tool is not available.

Earl et al. [18]’s work on test case generation for floating-point exceptions shares some similar-

ity with ours. We both use KLEE to symbolically execute floating-point programs, using Z3 to

solve constraints. However our goals and approach are very different. Their work focuses on

detecting floating-point exceptions and tries to find feasible paths by approximating floating-

point constraints using real arithmetic and then refines this by performing a local search for

floating-point inputs in the neighbourhood of the satisfying assignment (i.e. a set of real num-

bers). Our work is more generally applicable and offers more precision because we use Z3’s

support for the theory of floating-point arithmetic to symbolically execute arbitrary floating-

point programs. In principle our approach could be used to solve the problemof finding inputs

that trigger IEEE-754 exceptions. However, because we currently do not model these excep-

tions during execution, this isn’t possible. We believe this is just an implementation limita-

tion, rather than a limitation of our approach.

Collingbourne et al. [54] extend KLEE to check the equivalence of the output of two floating-

point programs. Their approach does not rely on a floating-point constraint solver and in-

stead speculatively executes program paths and then compares the expressions representing

program output to check for equivalence. Their approach for comparing expressions first

performs several rewrite rules to canonicalise the expressions and then performs a syntac-

tic comparison. This approach is prone to false positives and cannot generate test cases. In

contrast our approach is more general in that it can symbolically execute floating-point pro-

grams precisely, rather than just cross-checking two programs. Our approach does not suffer

from false positives and can generate test cases. However we have not tried applying our tools

to the problem of cross-checking and have not empirically compared our tools to theirs. We

leave this as potential future work.

The Pex [171] and SPF [148] symbolic execution tools can use search-based floating-point con-

straint solvers (FloPSy [106] and CORAL [167, 31] respectively) to solve floating-point path con-

straints. Both solvers are incomplete (i.e. they can’t show unsatisfiability). Pex tries tomitigate

this by first approximating floating-point constraints as constraints over rational numbers and

uninterpreted functions and then using FloPSy to refine the approximation if a satisfying as-

signment is found. In our view this is unsound because it may cause some paths to be marked
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as infeasible, when in practice they are feasible. SPF does not appear to handle Coral’s incom-

pleteness meaning that bugs might be missed. In contrast our approach uses Z3’s support for

the theory of floating-point arithmetic which is a complete theory and can be combined with

other complete theories such as the theory of FixedSizeBitVectors to solve constraints us-

ing a mixture of theories. Unfortunately, it is not possible to empirically compare these tools

with ours because they operate on different intermediate representations, for which there is

no common front-end.

TheSPF symbolic execution tool has alsobeenextended touse theREALIZERconstraint solver [113]

for the purpose of checking the accuracy of floating-point programs [157]. The solver mod-

els floating-point constraints exactly using reals, integers, and functions that model IEEE-754

rounding. These transformed constraints are then solved using Z3. This approach has the ad-

vantage that constraints can be written using a combination of floating-point and real value

expressions, which allow constraints that concern the deviation of a floating-point value from

a corresponding real value (a programmer usually intends the floating-point arithmetic to

model) to be written. In comparison our tool does not allow for constraints to be written over

reals, and thus our tool cannot be used to examine the deviation of floating-point expressions

from their real counterparts. In principle our tool could be extended to support real expres-

sions and leverage Z3’s support. However, a theory combination of FixedSizeBitVectors,

FloatingPoint and Reals is in general not decidable and would likely result in even worse

performance that what we have already observed.

The FPSE symbolic execution tool [32, 11] targets C programs and uses an interval solver over

real arithmetic combinedwithproject functions tomodelfloating-point arithmetic. This solver

cannot reason over bit-vector constraints and thus cannot solve constraints that use a mixture

of floating-point and bit-vector constraints. This limits the applicability of the tool because real

programs have branches that involve more that just floating-point conditions. In contrast, be-

cause the Z3 constraint solver supports combinations of theories (namely the FloatingPoint

and FixedSizeBitVectors theories) our approach can precisely reason about programs that

contain symbolic machine integers and floating-point variables. Binaries for FPSE are avail-

able but we have not empirically compared our tools with it. We leave this as potential future

work.
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4.7 Conclusion

In this chapter we presented our work that tries to remove some of the limitations of previous

symbolic execution tools by using the standardised theory of floating-point arithmetic avail-

able in several SMT solvers to solve floating-point constraints that appear in the context of

symbolically executing floating-point programs. Our hypothesis was that using this theory in

the context of symbolic execution would be possible. To test this hypothesis we collaborated

with a team of researchers from RWTH Aachen to create two independently developed sym-

bolic execution tools (§4.4), and a benchmark suite (§4.3) on which to evaluate these tools. We

performed this work using amethodology inspired byN-version programmingwith the goal of

eliciting different tool designs that would lead to more insights than if both teams had worked

on the same tool. Our experience creating the tools and our evaluation (§4.5.2) supports our

hypothesis, but with some important caveats.

The most important of these caveats is that constraint solver performance limits the perfor-

mance of our tools. If we wish improve the performance of our tools, we must first improve

the performance of constraint solvers on floating-point constraints. This problem inspired the

work in the next chapter, where we experiment with a technique that can reduce the time to

solve floating-point constraints.
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Chapter 5

Solving floating-point constraints using

coverage-guided fuzzing

5.1 Introduction

As noted in Chapter 4, in symbolic execution, constraint solving frequently accounts for the

majority of analysis time. This is especially truewhen reasoningoverfloating-point constraints.

Thus it is natural to seek ways to reduce the time required to solve constraints. This is the

research problem we tackle in this chapter.

In this chapter, we present our initial investigation into applying coverage-guided fuzzing in

the context of constraint solving. Recall from §2.4 that coverage-guided fuzzing involves gen-

erating random inputs for a program, with generation guided by previous inputs that have in-

creased code coverage of the program being fuzzed. This idea of applying coverage-guided

fuzzing to constraint solving was inspired by an approach we used to write and test specifi-

cations for some of the floating-point benchmarks used in the study of Chapter 4. For some

benchmarks we found that our modified version of the KLEE symbolic execution engine was

incredibly slow at proving whether or not assertions in the benchmarks could fail. To speed

up this process, some benchmarks were fuzzed using a coverage-guided fuzzer, and in several

cases the fuzzer found an input triggering an assertion failure much faster than our modified

version of KLEE did. This notable difference in bug-finding time made us wonder whether
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coverage-guided fuzzing could be used to quickly find satisfying assignments to floating-point

constraints. Our hypothesis is that a constraint-solving approach based on coverage-guided

fuzzing will be able to solve constraints faster than existing techniques in some cases.

To use a coverage-guided fuzzer to find satisfying assignments to a set of constraints Q1, our

key idea is to transform the constraints into a program P constructed such that:

• P initialises a set of variables from the fuzzer’s input, with each variable corresponding
to a free variable inQ.

• P contains a sequence of if statements where the truth of each branch condition corre-
sponds exactly to one constraint inQ and every constraint is represented in P . We refer
to these if statements as constraint branches.

• If the false branch of any of the constraint branches is taken, then the current input is
not a satisfying assignment for Q; in this case the program returns, requesting another
input.

• If execution of P follows a path that traverses all of the true branches of the constraint
branches, the current input is a satisfying assignment for Q; in this case the program
terminates.

The program P is then given to a coverage-guided mutation-based fuzzer. The fuzzer will re-

peatedly run P with different inputs until a satisfying assignment to Q is found or the fuzzer

reaches a resource limit (e.g. timeout). The intuition behind applying a coverage-guided fuzzer

is that it will try to generate inputs that cover new code. In particular, the program location

where it is checked whether all constraint branches evaluated to true is a target for the fuzzer.

This approach to solving constraints is sound (provided the semantics of the constraints of Q

are precisely modelled by program P ) but is not complete because it cannot practically prove

unsatisfiability in most cases. Proving constraints to be unsatisfiable would require the fuzzer

to test every possible input, which is infeasible to do in a reasonable time budget for all but the

most trivial constraints. Consequently, this approachneeds to be pairedwith a complete solver

to be useful on arbitrary constraints because the satisfiability of a set of arbitrary constraints

is usually not known in advance. We envision that our approach would be run in parallel with

a complete solver to form a portfolio solver.

In this chapter, we present the design and evaluation of JFS (JIT Fuzzing Solver) which is a pro-

totype constraint solver implementing the previously mentioned idea. This chapter is struc-

tured as follows. First, to concretely illustrate our ideawe provide an example translation from
1The satisfiability problem is the conjunction of all constraints in the set
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floating-point constraints to a C++ program suitable for fuzzing (§5.2). We then present the

design and implementation of our prototype, JFS (§5.3). Then we present our evaluation of

JFS, which provides evidence in support of our hypothesis (§5.4). We then review related work

(§5.5), and conclude (§5.6).

5.2 Example translation

To illustrate our idea of translating constraints into a program that can be fuzzed, we first

start with an example query in Listing 5.1. The example contains five assert statements,

each with a single constraint. The satisfiability problem that the example is stating is the con-

junction of all five constraints. The example contains two free variables a and b, both of type

(_ FloatingPoint 11 53), which corresponds to the IEEE-754 binary64 type. The constraints

perform division of a by b (where both a and b are constrained not to hold NaN values) using

two different rounding modes and asserts that the results are not NaN and not equal. This is

a satisfiable query. A possible satisfying assignment has a set to 0x0.410815d750e65p-10222

(≈ 5.65235 × 10−309) and b set to 0x1.021c1b000e7cp+28 (≈ 2.70648 × 108). In this assign-

ment, dividing aby b rounding to nearest (ties to even) results in 0x0.0000000408001p-1022 (≈

2.088452× 10−317) and rounding toward positive infinity results in 0x0.0000000408002p-1022

(≈ 2.088453 × 10−317). The results are denormal numbers where the difference is in the least

significant digit.

Listing 5.1: An example query in SMT-LIBv2.5 format made from a set of floating-point con-
straints.

1 (declare-fun a () (_ FloatingPoint 11 53))
2 (declare-fun b () (_ FloatingPoint 11 53))
3 (define-fun a_b_rne () (_ FloatingPoint 13 53) (fp.div RNE a b))
4 (define-fun a_b_rtp () (_ FloatingPoint 11 53) (fp.div RTP a b))
5 (assert (not (fp.isNaN a)))
6 (assert (not (fp.isNaN b)))
7 (assert (not (fp.eq a_b_rne a_b_rtp)))
8 (assert (not (fp.isNaN a_b_rne)))
9 (assert (not (fp.isNaN a_b_rtp)))
10 (check-sat)

A possible translation of these constraints into a C++ program—following the strategy outlined

in §5.1—is shown in Listing 5.2. The FuzzerTestOneInput function on line 1 is the entry point

for the fuzzer. The fuzzer will repeatedly call this function with different inputs. The inputs

are a buffer of bytes pointed to by the data pointer of size size bytes.

2This is C++ hexfloat notation
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Listing 5.2: A translation of the constraints in Listing 5.1 to a C++ program.
1 int FuzzerTestOneInput(const uint8_t* data, size_t size) {
2 if (size != 16) return 0;
3 uint64_t numSolved = 0;
4 double a = makeFloatFrom(data, size, 0, 63);
5 double b = makeFloatFrom(data, size, 64, 127);
6 if (!isnan(a)) ++numSolved;
7 if (!isnan(b)) ++numSolved;
8 double a_b_rne = div_rne(a, b);
9 double a_b_rtp = div_rtp(a, b);
10 if (a_b_rne != a_b_rtp) ++numSolved;
11 if (!isnan(a_b_rne)) ++numSolved;
12 if (!isnan(a_b_rtp)) ++numSolved;
13 if (numSolved == 5) {
14 return 1; // TARGET REACHED
15 }
16 return 0;
17 }

Line 2 An if statement checks whether the buffer is the right size to contain two doubles (16
bytes). If the buffer is not large enough, the function returns 0, which instructs the fuzzer
to try a different input. The reason for this guard is that the fuzzer is agnostic to our
domain (where all interesting inputs are the same size) and therefore may try to resize
the buffer as a possible mutation to an existing input. Not only is trying an input of the
wrong size undesirable, it also could lead to undefined behaviour in the program if the
buffer is too small because the programswould performan out of bounds read. Note that
in principle the fuzzer could bemodified to avoid suchmutations whichwouldmake this
buffer size check unnecessary.

Line 3 Variable numSolved is initialised to zero. This variable is used to track the number of
constraints satisfied.

Lines 4 and 5 Variables a and b are constructed from thebuffer usingbits 0 to 63 (a), andbits 64
to 127 (b). These variables correspond directly to the free variables a and b in Listing 5.1.

Line 6 An if statement checks whether or not a is a NaN. This line is the constraint branch
that corresponds directly to the first constraint on line 5 in Listing 5.1. If a is not a NaN
then numSolved is incremented by one to record that the constraint was satisfied.

Line 7 An if statement checks whether or not b is a NaN. This line is the constraint branch
that corresponds directly to the second constraint on line 6 in Listing 5.1. If b is not a
NaN then numSolved is incremented by one to record that the constraint was satisfied.

Line 8 The variable a_b_rne is declared and initialised with the result of calling div_rne(a,
b). This function computes the result of performing floating point division rounding the
result to thenearest value (ties to even). This variable corresponds directly to the a_b_rne
macro declared on line 3 in Listing 5.1.

Line 9 The variable a_b_rtp is declared and initialised with the result of calling div_rtp(a,
b). This function computes the result of performing floating point division rounding the
result toward positive infinity. This variable corresponds directly to the a_b_rtpmacro
declared on line 4 in Listing 5.1.

Line 10 The variables a_b_rne and a_b_rtp are compared. This line is the constraint branch
that corresponds directly to the third constraint on line 7 in Listing 5.1. If the constraint
is true then numSolved is incremented by one to record that the constraint was satisfied.

Lines 11 and 12 It is checkedwhether a_b_rne and a_b_rtp are NaN, respectively. These lines
are the constraint branches that correspond directly to the fourth (line 8) andfifth (line 9)
constraint in Listing 5.1 respectively. The variable numSolved is incremented as appro-
priate if either of these constraints is satisfied.
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Line 13 An if statement checks whether numSolved is equal to 5. If the condition is true,
all constraints have been satisfied and execution proceeds to line 14, where return 1
is executed. This indicates to the fuzzer that the desired input has been found. If the
condition is false, then not all constraints have been satisfied so execution proceeds to
line 16where return 0 is executed. This indicates to the fuzzer that another input should
be tried.

Even though this is a very simple example, it already shows some promise. On our test system,

Z3 takes approximately four seconds to solve this query, whereas applying a coverage-guided

fuzzer to the program given in Listing 5.2 takes less than a second. It is worth noting however

this is a cherry-picked example. First, the constraints were picked to be satisfiable. If the

constraintswereunsatisfiable the fuzzerwould loop forever becauseno inputwould ever cause

line 14 to be reached. Second, many different inputs satisfy the constraints so it quite easy for

the fuzzer to find a satisfying assignment to the constraints.

5.3 Design and Implementation

We now discuss JFS, our prototype implementation of a constraint solver based on coverage-

guided fuzzing as discussed in §5.1 and §5.2.

Figure 5.1: Architecture of JFS.

Figure 5.1 illustrates the architecture of JFS. JFS takes as input a file in the SMT-LIBv2.5 for-

mat which is consumed by the parser. Recall that the SMT-LIBv2.5 format consists of one or

more constraints. The satisfiability problem stated in the format is the conjunction of these

constraints, and as a consequence JFS takes as input a conjunction of constraints. The parser

outputs an abstract syntax tree (AST) for each constraint in the query. These ASTs are then con-

sumed by the preprocessor, which performs various transformations on the ASTs and extracts

information from them that is useful for fuzzing. This information and the ASTs are then con-

sumed by a back-end. A back-end handles generating a program from its input and invoking
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a fuzzer on the generated program with seeds provided by the seed manager. The design of

JFS allows for different back-ends to be used. This provides separation of concerns between

front-end tasks (parser and preprocessor) and the back-end.

Figure 5.1 shows two back-ends, the C++ back-end and the LLVM back-end. The purpose of

having different back-ends is to allow experimentation with different program generation and

fuzzing methods. Both back-ends use different code generation methods that generate native

code. These are discussed later in this section. After these back-ends have generated a pro-

gram to be fuzzed, the program is then executed by a fuzzer. If the fuzzer finds a satisfying

assignment, it terminates reporting the assignment, otherwise it continues to execute indefi-

nitely unless bounded (e.g. by a timeout).

The generation of native code by JFS is “just-in-time” (JIT) in the sense that query-specific

native code is generated in order to solve each query. This is why JIT appears in JFS’s name.

Generating native code allows us to re-use existing fuzzers built for fuzzing native code. This

approach might also offer improved throughput (inputs tried per second) when compared to

fuzzing constraints directly (i.e. constant foldingASTs)whichhas call indirectionoverhead and

memory allocation overhead. Of course generating native code has some associated overhead

as well, but this can be amortised over a sufficiently long fuzzing run.

The current implementation of JFS is written in C++11 and is built on top of several existing

projects. The in-memory representation of constraints uses Z3’s constraint language and cor-

responding API. This allows us to reuse Z3’s parser and constraint simplification tactics. To

compile native code, Clang and LLVM are used. To fuzz generated code, the coverage-guided

mutation-based fuzzer LibFuzzer [119] is used.

We now discuss the details of the various components of JFS.

Parser. The parser parses queries written in the SMT-LIBv2 language. We use Z3’s parser to

parse queries and produce the in-memory representation of constraints (ASTs).

Preprocessor. The preprocessor is used to compute information from the ASTs and modify

them to aid fuzzing. This is currently done in two stages: a simplification stage and then a

property extraction stage that extracts information relevant to fuzzing.

The following simplification passes are currently implemented:
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1. And hoisting. This separates the constraint (and a b) into two separate constraints a
and bwhere a and b are both boolean expressions. We have implemented this externally
from Z3.

2. Constant propagation. This detects free variables that have implied constant values and
replaces all uses of those free variables with the implied constant values. This is imple-
mented by using Z3’s propagate-values tactic. To illustrate this, consider the expression
(= a #x00)∧ (bvugt a b). Constant propagationwould infer that a has the value #x003

and that all uses of a should be replaced by this constant. Thus the resulting expression
would be (= a #x00) ∧ (bvugt #x00 b).

3. Duplicate constraint elimination. This removesduplicate constraints from the constraint
set. We have implemented this externally from Z3.

4. Expression simplification. This simplifies expressions by running Z3’s expression sim-
plifier. This performs actions such as constant folding.

5. Simple contradictions to false. This detects constraints of the form a and (not a) and
replaces them with false. We have implemented this externally from Z3.

6. True elimination. This removes constraints of the form true from the constraint set. We
have implemented this externally from Z3.

These passes are run in the order specified above to simplify the constraints as much as pos-

sible before fuzzing. After this, the property extraction stage runs. This stage consists of two

passes. The equality extraction pass and free variable to buffer assignment pass.

The equality extraction pass is an optimisation based on the following observation. The fuzzer

is very unlikely to guess inputs that satisfy equality constraints (e.g. (= a #xff00ff00)where

a is a free variable of type 32-bit bit-vector). In these cases, the equality constraints can be re-

moved and the program constructed in such a way that the constraint is always true, so that

the fuzzer does not waste time trying to guess. This is a sound transformation. The pass works

by walking over each constraint and gathering sets of equalities where each set contains the

free variables and any constant values implied to be equal by the constraints. Each equality

constraint used tomodify the set of recorded equalities is removed from the set of constraints.

The equality sets are then used during program generation and in the free variable to buffer

assignment pass. Currently, this pass only supports finding equalities by looking for applica-

tions of the equality function with arguments that are free variables or constants. This pass

could be extended in the future to handle the fp.eq function and arguments where a type cast

is performed.

3This is a SMT-LIBv2.5 hexadecimal literal. It is an 8-bit wide bit-vector with value 0.
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Listing 5.3: An example query in SMT-LIBv2.5 format to illustrate equality extraction.
1 (declare-fun a () (_ FloatingPoint 11 53))
2 (declare-fun b () (_ FloatingPoint 11 53))
3 (declare-fun c () (_ FloatingPoint 11 53))
4 (declare-fun d () (_ FloatingPoint 11 53))
5 (assert (= a b))
6 (assert (= b c))
7 (assert (= d (_ +zero 11 53)))
8 (assert (not (fp.isNaN (fp.add RNE c d))))
9 (check-sat)

To illustrate the equality extraction pass consider the constraints shown in Listing 5.3. The

pass would infer two sets {a, b, c} and {d, 0.0}. For the first set, the constraints on lines 5 and

6 imply that the free variables a, b, and cmust be equal to each other. For the second set, the

constraint on line 7 implies that the free variable d must be equal to the constant 0.0. The

program that would be generated using the information gathered by the equality extraction

pass is illustrated in Listing 5.4. There are several notable features here. First, only the free

variable a is constructed from the buffer. The variables b and c are initialised to a’s value, and

the d variable is initialised to be the constant 0.0. Second, only one constraint is checked on

line 9 (corresponds to line 8 in Listing 5.3). The other constraints are dropped because they

always hold due to the way the program is constructed.

Listing 5.4: A translation of the constraints in Listing 5.3 to a C++ program using information
gathered by the equality extraction pass.

1 int FuzzerTestOneInput(const uint8_t* data, size_t size) {
2 if (size != 8) return 0;
3 uint64_t numSolved = 0;
4 double a = makeFloatFrom(data, size, 0, 63);
5 double b = a;
6 double c = a;
7 double d = 0.0;
8 double c_plus_d = c + d;
9 if (!isnan(c_plus_d)) ++numSolved;
10 if (numSolved == 1) {
11 return 1; // TARGET REACHED
12 }
13 return 0;
14 }

The free variable to buffer assignment pass walks over the constraints and gathers all free

variables. Each free variable is then assigned a chunk of the input buffer that the generated

program will receive from the fuzzer, unless that free variable is part of an equality set (com-

puted by the equality extraction pass described above). In this case, if the equality set that the

free variable is a member of contains a constant it is not assigned a chunk of the buffer. At

program generation time the free variable will be assigned the value of the constant. If the

equality set that the free variable is a member of does not contain a constant, only one of the
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free variables in that set will be assigned a chunk of the buffer. At program generation time

all the other free variables in the equality set will be assigned the value of the free variable as-

signed a chunk of the buffer.

Currently chunks inside the buffer are tightly packed without consideration for alignment

(i.e. there is no padding to make sure chunks are aligned to a byte boundary). Chunks are or-

dered by the order they appearwhile traversing ASTs. Thismakes the order deterministic (use-

ful for reproducibility) but arbitrary. This strategy is sub-optimal for reading from the buffer

because byte aligned access is usually faster. This will likely lead to sub-optimal throughput

during fuzzing. However, it does optimise the number of wasted bits by keeping them to a

minimum. A wasted bit is a bit that is not used to instantiate free variables during fuzzing.

As such, when the fuzzer mutates those bits it will have no impact on the control flow of the

program, and hence satisfiability of the constraints. Thus it is desirable to minimise the num-

ber of wasted bits. It is worth noting that the choice to optimise the number of wasted bits is

due to our decision to use an off-the-shelf fuzzer. In principle the fuzzer’s mutations could be

modified to be aware of the structure of the fuzzing buffer so that wasted bits are not mutated

or used in crossover mutations.

After all these passes run it is checked whether the resulting constraints are trivially satisfi-

able or unsatisfiable. If the resulting constraint set is empty that implies the constraints were

satisfiable. If the resulting constraint set contains just false that implies the constraints are

not satisfiable. In both cases there is no reason to run the fuzzer because satisfiability has al-

ready been proved and so JFS just returns the result immediately. In the case of satisfiability,

the model for the resulting constraints can use any arbitrary assignment to the free variables.

However, a satisfiable model for the resulting constraints does not necessarily satisfy the orig-

inal constraints. This is because the equalities found by the equality extraction passes need to

be enforced, and the simplification passes might remove free variables whose values are im-

plied. To get a correct model, the model for the resulting constraints needs to be propagated

through all the executed passes (in reverse) so that they can modify the model if necessary.

A model that has been propagated through all the passes will then satisfy the original con-

straints. At the time of writing JFS does not implement model generation, but it is a feature

that will be added in the future.
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Runtime Libraries. Generated programs call functions from the runtime libraries, which im-

plement the semantics of the FloatingPoint and BitVector types from the SMT-LIBv2 stan-

dard. The libraries also include functions to create these types from arbitrary chunks of the

fuzzing buffer. There are several reasons for having runtime libraries rather than embed-

ding the semantics directly into the generated program. First, the runtime libraries do not

change between queries, so compilation time can be reduced by compiling them ahead of

time (i.e. they are pre-compiled). Second, having the functions that implement the semantics

of the SMT-LIBv2 theories in a runtime librarymeans that can easily be tested. If the functions

were not in a runtime library, and instead part of the generated program, it would make those

functions difficult to test.

The current implementation of the runtime library only supports using natively supported

types, thus the FloatingPoint types can only be 32-bit or 64-bit wide and BitVector types

must be at most 64-bits wide. The implementation only supports rounding modes natively

supported by x86_64 architecture (all except round to nearest, ties to away from zero). For our

initial study it was thought that restricting ourselves to natively supported types and rounding

modes would be sufficient. In the future, the runtime libraries could be extended to emulate

other SMT-LIBv2 types in software using arbitrary precision arithmetic libraries (e.g. LLVM’s

APInt for bit-vector types and GNUMPFR4 for floating-point types). Doing this would be a very

straightforward extension to JFS, however it is likely that the benefit of compiling query spe-

cific native code would be minimal due to the fact that native types are no longer being used.

In this scenario we suspect that the performance of fuzzing programs that use arbitrary preci-

sion arithmetic libraries would be very similar to (or worse than) just fuzzing the in memory

ASTs (i.e. the expressions representing constraints) directly.

C++ Back-end. The C++ Back-end generates a C++ program from the provided constraints and

information gathered by the property extraction stage. This program is compiled by Clang in-

strumentedwith coverage instrumentation (for the fuzzer) and then linked against the runtime

libraries and LibFuzzer. This produces a binary that JFS can then invoke.

The generated C++ programuses templated Float<EB,SB> and BitVector<N> types which cor-

respond to the (_ FloatingPoint EB SB) and (_ BitVec N) types in SMT-LIBv2 respectively.

The template parameters are used to pick5 what implementation is used to implement the

4http://www.mpfr.org/
5Using std::enable_if<>
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SMT-LIBv2 semantics at compile time. If the sizes are supported natively, then a native imple-

mentation of the semantics provided by the runtime libraries is used. Support for non-native

sizes is currently not implemented and so a compilation error is triggered if they are used.

The reason for using this indirection via templated types is so that the implementation of the

C++ program printer is decoupled from the implementation of the SMT-LIBv2 semantics. That

is to say, that the C++ program printer does not need to know whether the SMT-LIBv2 types

use a native or non-native implementation.

During early testing of JFS it was discovered that in some cases asking Clang to optimise gen-

erated programs resulted in long compile times that sometimes caused memory exhaustion.

To avoid these issues, the current implementation of JFS does not optimise generated code by

default.

There are many different ways to encode constraints as a program. The encoding we use

when evaluating a single input is to evaluate all constraints, even if we realise during evalu-

ation that some constraints are false. We refer to this encoding as the try-all encoding. This

is the encoding used in Listing 5.2. Another possible encoding is the fail-fast encoding. List-

ing 5.5 shows the fail-fast encoding for the constraints in Listing 5.1. In this encoding, if any

constraint branch is determined to be false then the current input is immediately discarded

(return 0 statements), without evaluating other constraint branches. When the fuzzer picks

an input that satisfies a constraint for the first time, a new branch will be covered which will

give the fuzzer feedback that the input is interesting. The advantage of the try-all encoding is

that it doesn’t matter in which order the program evaluates constraints because all of them

are evaluated. This means that if an input satisfies any of the constraints, then the branch

coverage will increase, regardless of the order of constraint evaluation. In contrast the fail-

fast encoding is order sensitive because constraints have to be satisfied in a particular order

for branch coverage to increase6. An advantage of the fail-fast encoding is that it might have

higher throughput (number of inputs tried per second) in caseswhere there are a largenumber

of constraints to evaluate. In our work we use the try-all encoding because we believe giving

the fuzzer feedback is more important than optimising for throughput. We leave empirically

comparing these encodings as a potential avenue for future work (see §6).

6JFS also supports this encoding
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Listing 5.5: A translation of the constraints in Listing 5.1 to a C++ program using the fail-fast
encoding.

1 int FuzzerTestOneInput(const uint8_t* data, size_t size) {
2 if (size != 16) return 0;
3 double a = makeFloatFrom(data, size, 0, 63);
4 double b = makeFloatFrom(data, size, 64, 127);
5 if (!isnan(a)) {} else { return 0; }
6 if (!isnan(b)) {} else { return 0; }
7 double a_b_rne = div_rne(a, b);
8 double a_b_rtp = div_rtp(a, b);
9 if (a_b_rne != a_b_rtp) {} else { return 0; }
10 if (!isnan(a_b_rne)) {} else { return 0; }
11 if (!isnan(a_b_rtp)) {} else { return 0; }
12 return 1; // TARGET REACHED
13 }

LLVMBack-end. TheLLVMback-end is currently not implemented but it is shown in Figure 5.1

to illustrate JFS’s design. In principle the LLVM back-end would construct a program in mem-

ory as LLVM IR, optimise it, add coverage instrumentation, link it to the runtime libraries and

LibFuzzer and then run it in-process using LLVM’s JIT.

We suspect that this would provide a performance benefit by avoiding calls to fork() and also

give very fine-grained control of how code is generated. However, for our prototype we did not

implement this because this approachwould be harder to debug andwould require significant

changes to LibFuzzer.

Seed Manager. The seed manager is in charge of deciding what seeds (initial input buffers to

try) to give the fuzzer. The seeds given to the fuzzer can greatly affect how quickly the fuzzer

finds a satisfying assignment (if one exists).

The seed manager allows an arbitrary number of seed generators to be attached. A seed gen-

erator generates a seed if it has available seeds left to supply, otherwise it reports that it has

been exhausted. The seedmanager iterates through the seed generators in a round-robin fash-

ion until all seed generators are exhausted or a bound is reached. The bound can either be the

maximum number of seeds or the maximum disk space used by the seeds. The intention of

this design is to allow different seeding strategies to be tried in the future.

Currently we use a very simple strategy where we supply two seed generators. The first gen-

erates a single seed of the correct size where all bits are zero, and the other generates a single

seed of the correct size where all bits are one. The motivation for doing this is that the fuzzer

is very unlikely to guess the correct size for the inputs on its own if not given any seeds. The

reason that we provide two seeds is so that there are enough seeds to perform a crossover mu-

tation. Using more advanced seeding strategies is a potential avenue for future work (see §6).
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Fuzzer. The fuzzer is currently implemented using LibFuzzer. The fuzzer is given a fixed time

budget to fuzz the program and uses seeds provided by the seed manager. If the fuzzer finds

its targets within the time budget it will report sat, otherwise it will report unknown.

There is one special case where the fuzzer is executed differently. If the size of fuzzing the

buffer is zero (i.e. there are no free variables) the fuzzer will run a single iteration. If the target

is reached the query is reported as satisfiable, otherwise it is reported as unsatisfiable. This

special case occurs if the constant folding pass is disabled or fails to constant fold expressions

that could be folded. We have observed failure to constant fold in several cases which is due

to bugs in Z3.7

We currently use LibFuzzer’s built-inmutators and do not provide our own. However, we have

modified LibFuzzer’s built-in mutators so that mutations that change the input size are not

tried. Note however the buffer size check that is emitted at the beginning of generated pro-

grams is still required because during LibFuzzer’s initialisation it always tries an input of zero

size. Experimenting with different mutation strategies is a potential avenue for future work

(see §6).

JFS’s design in principle supports finding satisfying assignments to any theory using finite

data types. However, our current implementation is restricted to any combination of the Core

(i.e. Boolean), FixedSizeBitVectors, and FloatingPoint theories of SMT-LIBv2. A further re-

strictionof the current implementation is that only a subset of theBitVector andFloatingPoint

types (as mentioned above) are supported.

Despite these restrictions, it would be possible to use JFS as a constraint solver for themodified

version of the KLEE symbolic execution engine presented in Chapter 4 that supported reason-

ing over floating-point programs. Although KLEE uses the theory of arrays which is not sup-

ported by JFS, the array ackermannization optimization implemented in Chapter 4 performs

an equisatisfiable transform that removes uses of the array theory in certain cases. In the case

that all uses of arrays are removed JFS could be used. Alternatively JFS could be modified to

use Z3’s bvarray2uf and ackermannize_bv tactics as a preprocessing step. These two tactics

combined perform a similar transform to array ackermannization, except that array accesses

at non-constant indices can be transformed.

7https://github.com/Z3Prover/z3/issues/1242
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5.4 Evaluation

We now turn to the evaluation of JFS.We compare JFS against six state-of-the-art SMT solvers,

all of which support solving floating-point constraints. These solvers are MathSAT5 [46] and

Z3 [140], which are complete solvers based on converting floating-point operations into bit-

vector operations and then bit-blasting to a SATproblem; CORAL [167], which is an incomplete

solver based on using meta-heuristic search; goSAT [25] and XSat [77], which are incomplete

solvers based onmathematical optimisation techniques; and COLIBRI [36] which is a complete

solver, based on interval methods. These are discussed in more detail in §2.6.2.

First, we discuss the benchmark selection process (§5.4.1). Then we discuss details of our

experimental set up (§5.4.3), after which we show and discuss the results of these experiments

in the context of our hypothesis (§5.4.4).

5.4.1 Benchmark selection

We use several SMT-LIB benchmark suites as the basis for our benchmarks. A summary of

these suites is shown in Table 5.1. The table shows three different benchmark suites, QF_BV,8

QF_FP,9 and QF_BVFP.10 A subset of these benchmarks are used in the annual SMT solver com-

petition, SMT-COMP.

QF_BV contains queries in the logic of quantifier free BitVector types. QF_FP contains queries

in the logic of quantifier free FloatingPoint types. QF_BVFP contains queries in the logic of

quantifier free BitVector and FloatingPoint types. All of these logics implicitly include the

Core theory (Boolean type). Even though our primary goal is to solve floating-point constraints

we include bit-vector constraints because JFS also supports them.

In Table 5.1 the columns describe the following information. Suite is the name of the bench-

mark suite, Revision is the Git SHA-1 hash corresponding to the revision we used, Sat is the

number of benchmarks labelled as satisfiable in the suite,Unsat is the number of benchmarks

labelled as unsatisfiable in the suite, Unknown is the number of benchmarks labelled as hav-

ingunknown satisfiability in the suite, andTotal is the total number of benchmarks in the suite.

8https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV.git
9https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP.git
10https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BVFP.git
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Table 5.1: Table showing a summary of the SMT-LIB benchmark suites we use as a basis for
our experiments.

Suite Revision Sat Unsat Unknown Total
QF_BV f7e691bf 11,280 20,991 136 32,407
QF_FP 3346ad7a 20,016 20,028 258 40,302
QF_BVFP 57d0c730 14,018 3174 23 17,215

In total across these three benchmark suites there are 89,924 benchmarks. Running this many

benchmarks on a single machine (even with many cores) would lead to an unacceptably large

upper boundonexecution time given that (aswe shall see in §5.4.3) themaximumallowed time

for a single query is 900 seconds. Therefore the selection of a subset of these benchmarks is

essential.

Our first step in picking a subset is to improve the benchmark labelling, which we will use in a

later step. The label on a benchmark states its expected satisfiability (sat, unsat, or unknown).

Across the benchmarks there are 417 benchmarks labelled as unknown. We ran bothMathSAT5

and Z3 over these benchmarks, with a timeout of 900 seconds to try to relabel them as either

sat or unsat. If either solver reports a benchmarks as being sat or unsat then we use that

as the benchmark label unless the solvers report conflicting satisfiability. However, we did

not observe any conflicts during this step. This step reduced the total number of benchmarks

labelled as unknown to 172. Table 5.2 shows a summary of the relabelled benchmarks.

Table 5.2: Table showing summary of the SMT-LIB benchmark suites after relabelling.

Suite Sat Unsat Unknown Total
QF_BV 11,283 20,991 133 32,407
QF_FP 20,125 20,141 36 40,302
QF_BVFP 14,033 3179 3 17,215

The second step in picking a subset of benchmarks is to remove all benchmarks labelled as

unsat. We do this because running JFS on unsatisfiable benchmarks serves no useful purpose.

Recall that JFS is an incomplete solver, in particular it cannot prove unsatisfiability in non-

trivial cases. Running JFS on unsatisfiable benchmarks inmost caseswould just lead towasted

compute time because the solver will not be able to find a satisfying assignment. This would

lead to the solver running indefinitely or reaching a timeout if one is specified. Recall from

§5.1 that to use JFS for arbitrary constraints (that might be unsatisfiable), that it would need to

be paired with a complete solver. Although we could do this here, we choose not to because

we wish to study JFS’s performance in isolation. We refer to the remaining benchmarks after

this second step, as the unsat-filtered benchmarks and the three filtered suites as QF_BVuf ,
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QF_FPuf , and QF_BVFPuf . This step leaves 45,613 benchmarks, which still has an unacceptably

large upper bound on execution time, so we filtered the benchmarks further by sampling from

them.

An obvious approach to try is to do uniform random sampling from the unsat-filtered bench-

marks. This approach unfortunately would result in a very biased subset of benchmarks be-

cause the benchmark suites are not well distributed in terms of difficultly. Here we use the

time to solve the query as the measure of difficulty.

We ran both MathSat511 and Z312 over the unsat-filtered benchmarks with a timeout of 900

seconds and recorded the wall time used by each solver. Although a timeout of 900 seconds

would appear to have the same unacceptably large upper bound on execution time (which we

are trying to avoid), it turns out many of the queries can be solved quickly by both MathSAT5

and Z3 which we quickly learnt when trying much smaller timeout values.

Figure 5.2 shows a histogram plot of Z3 wall clock execution time over the unsat-filtered QF_BV

benchmark suite (QF_BVuf ). The histogram has five-second-wide-bins. The x-axis shows exe-

cution time (linear scale) and the y-axis shows histogram bin count (logarithmic scale). It can

be seen that the execution time is very unevenly distributed. Some bins are incredibly large

(e.g. 9946 queries were solved in under 5 seconds) and some are very small (e.g. only one query

was solved in range of [410, 415) seconds). We observed a very similar distribution of execution

timeswhen runningwith either Z3 orMathSat5 on each of the unsat-filtered benchmark suites.

Thesehistograms illustratewhyuniformrandomsampling from the set of unsat-filteredbench-

marks is a bad approach: it is incredibly likely that benchmarks from the large bins will be

selected. This would result in too many easy benchmarks being selected, resulting in a sub-

set of benchmarks with very little diversity in terms of difficultly. Given that we would like to

observe JFS’s performance on benchmarks with a variety of difficulties, a different sampling

strategy was required.

11Version 5.5.1
12Version 4.6
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Figure 5.2: Histogram showing the approximate execution time distribution of Z3 on the unsat-
filtered QF_BV benchmarks with a 900 seconds per query timeout.

We use a stratified random sampling method to sample from each of the unsat-filtered bench-

mark suites. The strata in this case are the histogram bins. The algorithm we use picks a

benchmark by selecting a histogram by round-robin selection, then a bin from that histogram

by uniform random selection, and then a benchmark from the selected bin by uniform ran-

dom selection. The algorithm then repeats this processN times, to selectN benchmarks. This

samplingmethodmakes it very unlikely that only benchmarks from large binswill be selected.

Although we could make the probability of picking a bin inversely proportional to its height

(thus likely avoiding selection from large bins), this would bias our selection to infrequently

occurring execution times, which is not our goal.
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Algorithm 1 Algorithm used to select a diverse subset of benchmarks.

1: procedure SELECTBENCHMARKS(S,N )
2: B ← ∅ . Set of benchmarks
3: H ← [Z3(S),Mathsat5(S)] . List of histograms
4: while |B| < N ∧ |H| > 0 do
5: i← |B|
6: hist← H[i mod |H|] . Select histogram
7: if HIST_IS_EMPTY(hist) then
8: H ← REMOVE_ELEMENT(hist, H) . Remove histogram from list
9: continue
10: end if
11: bin←RANDOM_SELECT_BIN(hist) . Select histogram bin
12: if BIN_IS_EMPTY(bin) then
13: hist←REMOVE_BIN(hist,bin) . Remove empty bin from histogram
14: continue
15: end if
16: b← RANDOM_REMOVE_BENCHMARK(bin) . Select & remove benchmark from bin
17: B ← B ∪ {b}
18: end while
19: return B
20: end procedure

The algorithm we use is shown by the SELECTBENCHMARKS procedure in Algorithm 1. The

procedure SELECTBENCHMARKS takes S, a benchmark suite (in our case QF_BVuf , QF_FPuf , or

QF_BVFPuf ), andN , the number of benchmarks to select. On line 2,B is initialised as the empty

set. Then on line 3,D is initialised as a list of histograms. Z3(S) is the histogram of measured

Z3 execution times for the benchmark suite S and Mathsat5(S) is the histogram of measured

MathSat5 execution times for the benchmark suite S. In our case all histograms use 5 second

wide bins. Next on line 4, the algorithm loops until the required number of benchmarks have

been selected or the list of histograms becomes empty. The body of the loop proceeds as fol-

lows. On line 6 the histogram to select from is chosen in a round-robin fashion. Then on line 7

it is checkedwhether the selected histogram is empty using theHIST_IS_EMPTY(hist) function

which returns true if andonly if the givenhistogramcontains nobins. If the selectedhistogram

is empty, it is removed from the list of histograms and then the loop starts again. Next on line 11

a bin is randomly selected from the selected histogramwith uniform randomprobability using

the RANDOM_SELECT_BIN(hist) function. Then on line 12 it is checked whether the selected

bin is empty using the BIN_IS_EMPTY(bin) function. If the selected bin is empty then the se-

lected histogram is updated to remove the empty bin using the REMOVE_BIN(hist,bin) func-

tion and then the loop starts again. Next on line 16 a benchmark is selected and removed from

the selectedbinwith auniformrandomprobablyusing theRANDOM_REMOVE_BENCHMARK(bin)
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function. Finally, on line 17 the set B is updated to contain the selected benchmark. Notice,

that while selecting duplicate benchmarks is possible (due to there being multiple histograms

containing the samebenchmarks), collecting duplicate benchmarks is not due toB being a set.

WeapplyAlgorithm1 to eachof theunsat-filteredbenchmark suiteswithN set to 5%of the sup-

plied benchmark suite (S), but rounded up to nearest multiple of two so that an equal number

of benchmarks are selected from each histogram. Table 5.3 summarises the resulting bench-

mark suites which we refer to as the final-sample benchmarks and the three final suites as

QF_BVfs, QF_FPfs, and QF_BVFPfs.

Table 5.3: Table showing summary of the SMT-LIB benchmark suites after relabelling and
stratified random sampling.

Suite Sat Unsat Unknown Total
QF_BVfs 554 0 18 572
QF_FPfs 974 0 36 1010
QF_BVFPfs 699 0 3 702

5.4.2 Solver configuration

Wecompare JFS against six state-of-the art constraint solvers for floating-point constraints. We

now discuss their configuration along with the configuration of JFS. Some solvers do not com-

pletely support the theories used in the benchmark suites and we note this where appropriate.

These solvers are discussed in more detail in §2.6.2. For each of the solvers that support set-

ting a random seed, we set a fixed value to try to get reproducible results.

COLIBRI COLIBRI [36] is a complete solver based on interval solving that supports the

FixedSizeBitVectors, FloatingPoint, and Core theories. Thuswe apply it to all three bench-

mark suites. We use revision 1572 available from http://soprano-project.fr/download_

colibri.html. We have patched the bash wrapper script provided by the solver to be more

compliant with the SMT-LIB standard. Specifically we output unsat when the solver result is

unsatisfiable and only give a non-zero exit code when an error occurs. We use COLIBRI in its

default starexec_run_default configuration.

CORAL CORAL [167] is an incomplete solver based on meta-heuristic search. The CORAL

solver only supports floating-point constraints, hence we only apply it to the QF_FPfs bench-

marks. CORAL does not support the SMT-LIBv2.5 constraint format and instead has its own
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constraint language. Furthermore, its constraint language lacks several features meaning it

only supports a subset of the semantics of the FloatingPoint and Core theories. This makes

comparing CORAL with other constraint solvers extremely challenging. Nevertheless we per-

formabest effort comparisonby implementing a library (smt2coral13) to convert SMT-LIBv2.5

constraints into CORAL’s constraint language. We then use this library to implement awrapper

tool that invokes this library to convert constraints and then pass them to CORAL to solve. Our

translation of SMT-LIBv2.5 floating-point constraints to CORAL’s constraint language is neither

sound nor complete due to missing features in CORAL’s constraint language. Specifically:

1. The ite, fp.abs, fp.fma, fp.roundToIntegral, fp.min, fp.max functions are not sup-
ported.

2. Only the Bool, Float32, and Float64 sorts are supported.

3. Conversion operations between different floating-point sorts are not supported.

4. The =, fp.neg, fp.isNegative, and fp.isPositive functions are unsoundly translated.
This is because the semantics of the SMT-LIBv2.5 FloatingPoint theory distinguishes
betweenpositive zero andnegative zero. However, CORAL’s constraint languageprovides
no way to distinguish between the two zeros.

5. Only the “round to nearest, ties to even” rounding mode is supported.

CORAL has a large number of options available. We contacted the original authors for advice
on the options to use which are as follows:

• --cacheSolutions=false

• --simplifyUsingIntervalSolver=false

• --pcCanonicalization=false

• --removeSimpleEqualities=false

• --toggleValueInference=false

The authors also advised thatwe use CORALwith the interval solver realpaver (version 0.414),

so we compiled this (patched to work on x86_64) and configured CORAL to use it. The CORAL

authors also recommended trying both the PSO (particle swarm optimisation) and AVM (alter-

nating variablemethod) searchmethods, therefore we try both. We refer to the configurations

as, CORAL-PSO and CORAL-AVM respectively. CORAL-PSO uses the --nIterationsPSO=600

option to limit the number of iterations and CORAL-AVM uses the --nIterationsAVM=20000

and --nSelectionsAVM=10 options to limit the number of AVM iterations. Again, these options

13https://github.com/delcypher/smt2coral
14http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/granvil/realpaver/

138

https://github.com/delcypher/smt2coral
http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/granvil/realpaver/


were values suggested by the CORAL developers. In these configurations CORAL will exit af-

ter the number of requested iterations has been performed. Unfortunately, there is no way to

force CORAL to run until a timeout has been reached. To workaround this, we increment the

random seed for CORAL and start the search again if CORAL exits and a timeout has not yet

been reached.

goSAT goSAT [25] is an incomplete solver that reformulates solving floating-point constraints

as amathematical optimisation problemand then applies off-the-shelf libraries to find a global

minimum. The solver only supports the FloatingPoint and Core SMT-LIBv2 theories, so we

only run it on the QF_FPfs benchmarks.

We use goSAT version b5a423cd4736bac13672b66218d7f63b10453bef in its default configura-

tion but with the -smtlib-output option so that its output is SMT-LIBv2.5 compliant. goSAT

has several dependencies. We use nlopt15 2.4.2, LLVM 4.0, and Z3 4.6.0.

JFS We use JFS version 7caabce0feab0200652996aeb31dad420c5a611b. JFS has several de-

pendencies. WeuseLLVMr325330, Clangr325114, and compiler-rtr324506 all on therelease_60

branch; and Z3 4.6.0.

We use the try-all branching encoding (-branch-encoding=try-all), with code optimisa-

tion disabled (-O0), and with naive seeds (-sm-all-ones-seed, -sm-all-zeros-seed,

-sm-max-num-seed=2).

JFS supports the FloatingPoint, BitVector, and Core theories, but with some caveats as ex-

plained in §5.3. Thus we apply JFS to all three benchmark suites.

MathSAT5 MathSAT5 [46] is a complete solver, basedonbit-blasting constraints to a SATprob-

lemwhich is then solved by a SAT solver. We useMathSAT5 version 5.5.1. MathSAT5 supports

the FloatingPoint, FixedSizeBitVectors, and Core theories. Therefore we apply it to all

threebenchmarks suites. MathSAT5comeswith a set of configurations (smtcomp2015_main.txt)

for several different SMT-LIBv2.5 logics. We apply the appropriate configuration for each of

the three benchmark suites.

15https://nlopt.readthedocs.io/en/latest/
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XSat XSat [77] is an incomplete solverwhich operates on the sameprinciples as goSAT. It only

supports the FloatingPoint and Core theories, so we only run it on the QF_FPfs benchmarks.

XSat has not made any official public releases. However, a version of the solver was uploaded

to STAR-EXEC16 servers for the 2017 SMT-COMP competition, and so this is the version we use.

Z3 Z3 [140] is a complete solver based on bit-blasting constraints to a SAT problem which is

then solved by a SAT solver. Z3 supports the FloatingPoint, FixedSizeBitVectors, and Core

theories, so we apply it to all three benchmark suites. We use Z3 version 4.6.0. We use Z3 in

its default configuration.

5.4.3 Experimental set up

We ran the eight configurations (seven solvers, with CORAL in two configurations) on a ma-

chine with two Intel® Xeon® E5-2450 v2 CPUs (8 physical cores each) with 256GiB of RAM run-

ning Ubuntu 16.04LTS. Each solver was run five times per benchmark with a timeout of 900

seconds for each run. The repeat runs of a solver are used to compute average execution time

and observe non-deterministic behaviour. Each solver was executed in parallel over the set of

benchmarks, running on at most 13 benchmarks in parallel. This was done to minimise the

time taken to perform experiments.

It is important that solver execution times are reproducible. To aid in this the following steps

were taken:

• Each solver was executed in a Docker [132] container to keep the running solvers isolated
from each other and to control their allocated resources.

• Each container was pinned to a single CPU core. The CPU cores used for pinning were
isolated from system scheduling using systemd’s CPUAffinity parameter. This means
that each solver gets exclusive access to one CPU. This partiallymitigates other processes
running (including other solvers) on the system interfering with the running solver.

• Each containerwas pinned to its CPU’s nearestNUMAnode. This avoids the container us-
ing a mix of different NUMA nodes which can lead to non-reproducible execution times.

• CPU hyper-threading was disabled. This is required to make CPU pinning effective be-
cause when hyper-threading is enabled, one physical CPU core pretends to be two sepa-
rate CPU cores.

• CPU turbo boost was disabled. CPU turbo boost can cause large changes in the CPU clock
speed during solver execution which can lead to non-reproducible execution times.

16https://www.starexec.org/
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• The pstate CPU governor was set to “performance” requesting the same min/max fre-
quency (2.5GHz). Using these settings tries to avoid changing the CPU clock speed as
much as possible.

• Each container had a 10 GiB memory limit enforced and it was requested that no swap
space be used. Using a memory limit is done to prevent any one solver from using more
than its fair share of the available memory.

• Address space layout randomisation (ASLR) was disabled. ASLR can cause behaviour
differences in solvers that rely on particular memory addresses.

• As noted in §5.4.2, each solver had a fixed random seed set, if supported.

To combine repeat runs of a solver on the same benchmark we took the following approach.

If any run on the same benchmark is reported as satisfiable or unsatisfiable and there are no

conflicts, then it is counted as having given the correct result. If the reported satisfiability does

not match the benchmark’s label and the benchmark’s label is not unknown, then the solver is

counted as having given a wrong result. If a run on the same benchmark is reported as a mix-

ture of satisfiable and unsatisfiable, and the label of the benchmark is not unknown, then the

solver is treated as having given the wrong result. Otherwise the solver is counted as reporting

the benchmark as unknown. To combine the execution times (wall clock time) the arithmetic

mean and confidence intervals (99.9%) are computed. When comparing execution times be-

tween solvers, mean execution times are only considered distinguishable if their confidence

intervals do not overlap.

5.4.4 Results

We now discuss the results of our experiments. First, we look at the satisfiability results re-

ported by each solver, for the three different benchmark suites. Second, we look at JFS’s sim-

ilarity, complementarity and limitations in terms of benchmark satisfiability, with respect to

other solvers on each of the three benchmark suites. Third, we compare JFS’s runtime per-

formance to other solvers for the three different benchmarks suites. Finally we discuss these

results in the context of our hypothesis (defined in §5.1).
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Satisfiability results

Table 5.4: Table summarising satisfiability results reported by each solver for the QF_BVfs
benchmarks.

Solver Sat Unsat Wrong result Unknown
COLIBRI 65 0 0 507
JFS 21 0 0 551
MathSAT5 424 0 0 148
Z3 497 0 0 75

Table 5.4 shows how the benchmarks in the QF_BVfs suite were reported by the COLIBRI, JFS,

MathSAT5, and Z3 solvers. The CORAL, goSAT, and XSat solvers cannot be applied to this suite,

hence their absence (see §5.4.2). The Sat andUnsat columns show the number of benchmarks

that a solver reported as satisfiable or as unsatisfiable, respectively. TheWrong result column

shows the number of benchmarks where a solver reported the satisfiability to be the opposite

of the existing benchmark label. Finally, the Unknown column shows the number of bench-

marks where a solver failed to give a result. From the table it can be seen that Z3 is the clear

winner, reporting 497 benchmarks as satisfiable. MathSAT5 closely follows by reporting 424

benchmarks as satisfiable. The COLIBRI and JFS solvers reported a very low number of bench-

marks as satisfiable, with JFS doing theworst. None of the benchmarkswere reported as unsat-

isfiable andnoneof the solvers gave awrong result. Noneof the solvers gave conflicting results.

Table 5.5: Table summarising the different reasons for each solver failing to give a result for
the QF_BVfs benchmarks.

Solver Crash Out of memory Timeout Unknown Unsupported
COLIBRI 16 0 458 33 0
JFS 0 0 504 0 47
MathSAT5 0 19 129 0 0
Z3 0 13 62 0 0

All solvers failed to give a result for some of the QF_BVfs benchmarks. Table 5.5 summarises

the reasons for the solvers not giving a result. The Crash column shows for each solver, the

number of benchmarks that resulted in the solver crashing. TheOut ofmemory column shows

for each solver, the numbers of benchmarks that resulted in the memory limit being reached.

TheUnknown column shows for each solver, the number of benchmarks where the reason for

failure could not be inferred. These cases are essentially the solver exiting, without hitting any

resource limit with a non-zero exit code that does not indicate a segmentation fault (one type

of crash) and with empty output. Finally, theUnsupported column shows, for each solver, the
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number of benchmarkswhere the solver reported that it did not support the benchmark. Here

JFS reports that it does not support 47 benchmarks due to themusing bit-vectors that arewider

than it currently supports. This is only a limitation of JFS’s current implementation because

support for wider bit-vectors could be added in the future.

Unfortunately these results show that JFS is not very competitive on the QF_BVfs benchmarks.

However, we shall see later in this section that JFS can complement every solver on this bench-

mark suite.

Table 5.6: Table summarising satisfiability results reported by each solver for the QF_BVFPfs
benchmarks.

Solver Sat Unsat Wrong result Unknown
COLIBRI 666 1 6 29
JFS 682 0 0 20
MathSAT5 699 0 0 3
Z3 699 0 0 3

Table 5.6 shows how the benchmarks in the QF_BVFPfs suite were reported by the COLIBRI,

JFS, MathSAT5, and Z3 solvers. The CORAL, goSAT, and XSat solvers cannot be applied to this

suite, hence their absence (see §5.4.2). The table uses the same columns as Table 5.4, whose

meanings were previously described. From the table it can be seen that both Z3 andMathSAT5

found 699 benchmarks to be satisfiable. This is closely followedby JFS,which found 682 bench-

marks to be satisfiable. Finally, COLIBRI found fewer, but a respectable 666 benchmarks to

be satisfiable. COLIBRI actually found seven benchmarks to be unsatisfiable. For one bench-

mark the label is unknown and no other solver was able to contradict COLIBRI, so, according to

ourmethodology, we consider this result to be correct. However, for six benchmarks COLIBRI

reported the benchmarks as unsatisfiable even though the label stated the benchmarks are sat-

isfiable. For three of those benchmarks, JFS reported them as satisfiable, and for all of those

benchmarks MathSAT5, and Z3 reported them as satisfiable. This indicates that COLIBRI’s re-

sults are wrong which suggests that its implementation either contains bugs or is unsound.

None of the other solvers reported benchmarks as being unsatisfiable or gave wrong results.

Table 5.7: Table summarising the different reasons for each solver failing to give a result for
the QF_BVFPfs benchmarks.

Solver Crash Out of memory Timeout Unknown Unsupported
COLIBRI 0 0 12 17 0
JFS 0 0 18 0 2
MathSAT5 0 0 3 0 0
Z3 0 0 3 0 0
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All solvers failed to give a result for some of the QF_BVFPfs benchmarks. Table 5.7 summarises

the reasons for the solvers not giving a result. The columns have the same meaning as in

Table 5.5. Here JFS reports that it does not support twobenchmarks due to themusingfloating-

point expressions with widths it does not currently support. This is only a limitation of JFS’s

current implementation because support for other floating-point widths could be added in the

future.

These results show that JFS is very competitive with the other solvers in terms of the number

of benchmarks solved on the QF_BVFPfs benchmark suite. It does not beat every solver on these

terms, however we will see later in this section that JFS can also complement every solver on

this benchmark suite.

Table 5.8: Table summarising satisfiability results reported by each solver for the QF_FPfs
benchmarks.

Solver Sat Unsat Wrong result Unknown
COLIBRI 956 3 5 46
CORAL-AVM 19 0 0 991
CORAL-PSO 48 0 0 962
goSAT 73 0 0 937
JFS 949 0 0 61
MathSAT5 849 1 0 160
XSat 228 17 108 657
Z3 951 0 0 59

Table 5.8 shows thehowbenchmarks in theQF_FPfs suitewere reportedby theCOLIBRI, CORAL

(in two configurations), goSAT, JFS, MathSAT5, XSat, and Z3 solvers. The table uses the same

columns as Table 5.4, whose meanings were previously described. From the table it can be

seen that COLIBRI reported the most number of benchmarks as satisfiable (956), followed

closely by Z3 (951) and JFS (949). MathSAT5 found fewer benchmarks (849) to be satisfiable.

The remaining solvers XSat (228), goSAT (73), CORAL-PSO (48), and CORAL-AVM (19) found

significantly fewer benchmarks to be satisfiable.

The COLIBRI, MathSAT5, and XSat solvers reported some benchmarks as unsatisfiable.

XSat reported 125 benchmarks to be unsatisfiable. For 17 benchmarks, XSat reported them as

unsatisfiable where the benchmark label was unknown. For these benchmarks neither Math-

SAT5, JFS, nor Z3 were able to contradict these results. However, goSAT contradicts some of

these by reporting three of these benchmarks as satisfiable. COLIBRI agrees with XSat on two

of 17 benchmarks. However, given the relative immaturity of COLIBRI and goSAT (compared
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to MathSAT5 and Z3) we chose not to trust these results, so we continue to use the existing

labels and say that XSat correctly reported these benchmarks as unsatisfiable. For 108 bench-

marks, XSat reports them as unsatisfiable where the existing benchmark labels state that they

should be satisfiable. On all these benchmarks either MathSAT5, JFS, or Z3 (or a combination

of these) were able to contradict XSat by reporting these benchmarks as satisfiable. These are

wrong results which demonstrates XSat’s unsound behaviour. When XSat’s search fails to find

a solution within a reasonable period of time, it reports a benchmark as unsatisfiable even

though it has no proof that this is the case.

COLIBRI reported eight benchmarks to be unsatisfiable. For three of these benchmarks, COL-

IBRI reported them as unsatisfiable where the benchmark label was unknown. No other solver

was able to contradict these results so we say that COLIBRI correctly reported them as unsat-

isfiable. However, COLIBRI reported five benchmarks as unsatisfiable where the benchmark

label stated that they should be satisfiable. For these five benchmarks either MathSAT5 or Z3

(or sometimes both) contradicted COLIBRI’s results. Therefore for these five benchmarks we

conclude that COLIBRI gave a wrong result. This demonstrates that COLIBRI either contains

implementation bugs or is unsound.

MathSAT5 reported one benchmark as unsatisfiable where the benchmark label was unknown

andnoother solverwas able to contradict this result. Thereforewe say thatMathSAT5 correctly

reported this benchmark as unsatisfiable.

Table 5.9: Table summarising the different reasons for each solver failing to give a result for
the QF_FPfs benchmarks.

Solver Crash Out of memory Timeout Unknown Unsupported
COLIBRI 1 0 36 1 8
CORAL-AVM 344 0 52 0 595
CORAL-PSO 344 0 23 0 595
goSAT 159 0 0 469 309
JFS 0 0 61 0 0
MathSAT5 0 0 35 0 125
XSat 645 0 12 0 0
Z3 0 4 55 0 0

All solvers failed to give a result for some of the QF_FPfs benchmarks. Table 5.9 summarises the

reasons for the solvers not giving a result. The columns have the samemeaning as in Table 5.5.

Many solvers reported some benchmarks as being unsupported. COLIBRI failed to parse one

benchmark. For the CORAL-AVM and CORAL-PSO solvers, 594 benchmarks could not be con-

verted fromSMT-LIBv2.5 constraints to CORAL’s constraint language using the smt2coral tool.
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This is due to there beingnoway to perform the conversion due toCORAL’s constraint language

not being rich enough to support the semantics of the SMT-LIBv2.5 FloatingPoint theory. The

other benchmark not supported by CORAL-AVM and CORAL-PSO is a benchmark that is too

large to be passed to CORAL when converted by the smt2coral tool. The goSAT solver reports

that it doesn’t support 309 benchmarks. The MathSAT5 solver reports that it doesn’t support

125 benchmarks. This is due to MathSAT5 not supporting the fp.fma and fp.rem functions

from the FloatingPoint theory. It is this lack of support that caused MathSAT5 to be ranked

under JFS in terms of the number of benchmarks shown to be satisfied.

These results show that JFS is very competitive with the other solvers in terms of the number

of benchmarks solved on the QF_FPfs benchmark suite. In fact it beats MathSAT5, a state-of-

the-art and widely used constraint solver. However, as noted above the reason here is due to

MathSAT5 not supporting some functions from the SMT-LIBv2.5 FloatingPoint theory. JFS

does not beat every solver on these terms, however wewill see later in this section that JFS can

also complement every solver on this benchmark suite.

Satisfiability similarity, complementarity and limitations

So far we have only examined the absolute number of benchmarks solved by each solver. We

now examine the number of benchmarks that can be shown to be satisfiable by both JFS and

another solver (i.e. similarity), by JFS and not the other solver (JFS complementing another

solver), not by JFS but by the other solver (a limitation of JFS), and neither (a limitation of both

solvers).

Table 5.10: Table summarising the satisfiability intersection, differences, and limitations for
JFS compared to other solvers for the QF_BVfs benchmarks.

Solver Both Only JFS Only other Neither
COLIBRI 17 (2.97%) 4 (0.70%) 48 ( 8.39%) 503 (87.94%)
MathSAT5 21 (3.67%) 0 (0.00%) 403 (70.45%) 148 (25.87%)
Z3 20 (3.50%) 1 (0.17%) 477 (83.39%) 74 (12.94%)
All above 21 (3.67%) 0 (0.00%) 520 (90.91%) 31 ( 5.42%)
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Table 5.10 shows JFS’s capability, complementarity, and limitations for the QF_BVfs bench-

marks. The Both column states the number of benchmarks shown to be satisfiable by both

JFS and the other solver. The Only JFS column shows the number of benchmarks that were

shown to be satisfiable by JFS and not by the other solver. The Only other column shows the

number of benchmarks that were shown to be satisfiable by the other solver and not by JFS.

The Neither column shows the number of benchmarks that were shown to be satisfiable by

neither JFS nor the other solver. Each row of the table corresponds to the other solver (speci-

fied by the Solver column). The “All above” row has a special meaning and is a combination of

all the above results. For the “All above” row, the Both table cell is the union of all benchmarks

that both JFS and another solver managed to solve (i.e. it is a union of intersections, not an in-

tersection of intersections). For this row, the Only JFS table cell is the number of benchmarks

found satisfiable by JFS and none of the other solvers. For this row, the Only other table cell is

the union of all benchmarks found to be satisfiable by another solver and not JFS. For this row

the Neither table cell is the number of benchmarks not found satisfiable by any solver. From

this table we can see that there is very little similarity between JFS and other solvers (Both col-

umn) in terms of the benchmarks solved. However, the table shows that JFS complements two

of the solvers by solving a few benchmarks that another solver does not (Only JFS column). JFS

does not complement a combination of all the other solvers however. In terms of limitations

of JFS, it can be seen that most of the benchmarks are in the Only other column for MathSAT5

and Z3, and in the Neither column for COLIBRI.

These results show that on the QF_BVfs benchmarks JFS occasionally complements an existing

solver, but for the majority of benchmarks other solvers are superior.

Table 5.11: Table summarising the satisfiability intersection, differences, and limitations for
JFS compared to other solvers for the QF_BVFPfs benchmarks.

Solver Both Only JFS Only other Neither
COLIBRI 660 (94.02%) 22 (3.13%) 6 (0.85%) 14 (1.99%)
MathSAT5 682 (97.15%) 0 (0.00%) 17 (2.42%) 3 (0.43%)
Z3 682 (97.15%) 0 (0.00%) 17 (2.42%) 3 (0.43%)
All above 682 (97.15%) 0 (0.00%) 17 (2.42%) 3 (0.43%)

Table 5.11 shows JFS’s capability, complementarity, and limitations for the QF_BVFPfs bench-

marks. The columns have the samemeanings as Table 5.10, which were previously discussed.

From this table we can see a great deal of similarity between the solvers with the majority of

benchmarks being solved by both JFS and another solver. In term of complementarity, we can

see that JFS solves 22 benchmarks that COLIBRI does not. However, JFS does not complement
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the MathSAT5 or Z3 solvers. In terms of JFS’s limitations we can see that there are 17 bench-

marks that JFS fails to solve that at least one of the other solvers manage to solve. The table

also shows that there is a very large overlap in the capability of JFS, MathSAT5, and Z3; and

that the number of benchmarks not solved by any solver is very small compared to the other

benchmark suites. This suggests that the QF_BVFPfs benchmark suitemight not be challenging

enough to illustrate the different capabilities of the tools. However, later in this section wewill

see that the runtime of these solvers on this benchmark suite is sometimes non-trivial, which

indicates that the benchmark suite does contain challenging benchmarks.

These results show that JFS is very competitivewith other solvers on the QF_BVFPfs benchmarks

and is able to complement the COLIBRI solver. However, JFS does show some limitations.

Table 5.12: Table summarising the satisfiability intersection, differences, and limitations for
JFS compared to other solvers for the QF_FPfs benchmarks.

Solver Both Only JFS Only other Neither
COLIBRI 938 (92.87%) 11 ( 1.09%) 18 (1.78%) 43 (4.26%)
CORAL-AVM 18 ( 1.78%) 931 (92.18%) 1 (0.10%) 60 (5.94%)
CORAL-PSO 36 ( 3.56%) 913 (90.40%) 12 (1.19%) 49 (4.85%)
goSAT 55 ( 5.45%) 894 (88.51%) 18 (1.78%) 43 (4.26%)
MathSAT5 824 (81.58%) 125 (12.38%) 25 (2.48%) 36 (3.56%)
XSat 213 (21.09%) 736 (72.87%) 15 (1.49%) 46 (4.55%)
Z3 939 (92.97%) 10 ( 0.99%) 12 (1.19%) 49 (4.85%)
All above 949 (93.96%) 0 ( 0.00%) 35 (3.47%) 26 (2.57%)

Table 5.12 shows JFS’s capability, complementarity, and limitations for the QF_FPfs bench-

marks. The columns have the samemeanings as Table 5.10, which were previously discussed.

From this table we can see a great deal of similarity between the Z3 and COLIBRI solvers, and

a high (but notably less) amount of similarity with MathSAT5. The similarity with the other

search-based solvers (CORAL-AVM, CORAL-PSO, goSAT, and XSat) is quite low. In terms of

complementarity, JFS complements every solver by finding benchmarks to be satisfiable that

the other solver does not. However, JFS does not find any benchmarks to be satisfiable that a

combination of all other solvers would. For the search-based solvers (CORAL, goSAT, JFS, and

XSat) JFS finds many benchmarks to be satisfiable that the other solver does not. This shows

that out of the all the search-based solvers, JFS is the most competitive, at least for the bench-

markwe have compared on. In terms of limitations, every solver finds some benchmarks to be

satisfiable that JFS does not (i.e. every solver is able to complement JFS). There are also some

benchmarks that neither JFS, nor another solver manage to show as satisfiable.
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These results show that JFS is very competitive with other solvers on the QF_FPfs benchmarks

and is able to complement every solver, while showing some limitations.

Runtime performance

So farwe have only looked at howmany benchmarkswere found to be satisfiable by the solvers

in our study. Another important aspect is how quickly the solvers are able to solve the bench-

marks. We now compare the wall clock execution times of JFS compared to every other solver

for each of the three benchmark suites.

Figure 5.3 showsa set of scatter graphs comparing JFS against COLIBRI (5.3a),MathSAT5 (5.3b),

and Z3 (5.3c) on the QF_BVfs benchmarks. For every benchmark where both JFS and the other

solver found the benchmark to be satisfiable or reached a timeout we plot a point. The num-

ber of points is shown above each graph (e.g. for Figure 5.3a 480 benchmarks were found to be

satisfiable by both JFS and COLIBRI or a timeout was reached). We exclude all other cases be-

cause it does not make sense to compare execution times if one of the solvers crashed or gave

the wrong result. A point at position (x, y) indicates that a benchmark took on average x sec-

onds for JFS to show satisfiability and y seconds for the other solver to show satisfiability. If

a solver reached a timeout its ordinate value is 900 seconds. A benchmark where both solvers

reached a timeout is shown as a point at (900, 900). In most cases there are multiple bench-

marks where this occurs and this leads to multiple points being drawn at the same location.

To allow the reader to see the number of benchmarks for which this occurs we explicitly an-

notate these points, stating the number of “dual timeouts”. All points include error bars which

show the upper and lower confidence intervals. Each graph has a diagonal line (y = x). Points

that are above the line (i.e. x < y) are benchmarks where JFS was faster than the other solver.

Points that are below the line (i.e. x > y) are benchmarks where the other solver was faster

than JFS. The graphs show the number of benchmarks for which one solver was faster than

the other. The number written above the diagonal line is the number of benchmarks where

JFS was faster and the number written below the diagonal line is the number of benchmarks

where the other solver was faster. For example for Figure 5.3a JFS was faster than COLIBRI for

10 benchmarks but COLIBRI was faster than JFS for 32 benchmarks. Note that we take confi-

dence intervals into account when computing these numbers. If the confidence intervals of

the two solver’s execution times overlap, then we consider them incomparable.
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From looking at the graphs in Figure 5.3 we can make several interesting observations. First,

COLIBRI, MathSAT5, and Z3 are faster more often for these benchmarks. Second, there are

cases where JFS is faster than the other solvers. This illustrates that JFS could be used to com-

plement existing solvers. Third, the points are all very close to the axes (i.e. x = 0 and y = 0

lines) or solver timeout lines (i.e. x = 900 and y = 900). In most cases either JFS solves the

problem very quickly with the other solver struggling, or the opposite. This again suggests that

JFS is verymuchcomplementary to the other solvers in termsof runtimeperformance. Finally,

recall from earlier in this section that Table 5.11might suggest that the QF_BVFPfs benchmarks

are not challenging enough. However, we can see from Figure 5.4 that several of the bench-

marks took a non-trivial (i.e.> 10 seconds) amount of time to solvewhich indicates that at least

some subset of the benchmarks are challenging.

Figure 5.4 showsa set of scatter graphs comparing JFS against COLIBRI (5.4a),MathSAT5 (5.4b),

and Z3 (5.3c) on the QF_BVFPfs benchmarks. For these graphs we can make the same observa-

tions that we did for the graphs in Figure 5.4. Those observations show that although the other

solvers are more frequently faster than JFS, there are cases where JFS is faster, and in those

cases JFS is complementary.

Figure 5.5 shows a set of scatter graphs comparing JFS against COLIBRI (5.5a), CORAL-AVM

(5.5b), CORAL-PSO (5.5c), goSAT(5.5d),MathSAT5 (5.5e), XSat (5.5f), andZ3 (5.5g) on theQF_FPfs

benchmarks. We can make several interesting observations from these graphs. First, except

for goSAT, JFS is faster more often (> 70%) than the other solver. Second, the error bars for

XSat’s execution time are very large. We discovered that this is because XSat exhibits very non-

deterministic behaviour, despite our best efforts. We did not provide it with a random seed

because we could not find an option to do this, we suspect that this is the source of this non-

deterministic behaviour. These large error bars do not affect our observations because they

occur in cases where JFS reached a timeout so it is clear in those cases that XSat was faster.

Finally, most of the points are close to the axes or the solver timeout lines (i.e. x = 900 and

y = 900). This shows that in most cases either JFS is much faster than the other solver, or

vice versa. This observation shows that JFS is complementary to the other solvers in terms of

execution time.
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Figure 5.3: Scatter plots comparing JFS’s execution time with that of other solvers on the
QF_BVfs benchmarks.
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Figure 5.4: Scatter plots comparing JFS’s execution time with that of other solvers on the
QF_BVFPfs benchmarks.
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Figure 5.5: Scatter plots comparing JFS’s execution time with that of other solvers on the
QF_FPfs benchmarks.
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Validity of hypothesis

Recall from §5.1 that our hypothesis was that using coverage-guided fuzzing as a method for

solving floating-point constraints would be faster than existing techniques in some cases. Our

results show that JFS (ourprototype solver implementing constraint solving via coverage-guided

fuzzing) is indeed faster is some cases than existing solvers on floating-point constraints. This

supports our hypothesis.

Our results are even better than our pessimistic hypothesis. Our results show that JFS is very

competitive on floating-point benchmarks (QF_FPfs benchmark suite) compared with existing

solvers, is faster than all existing solvers on many benchmarks, and is superior to the exist-

ing search-based solvers (CORAL, goSAT, and XSat) in terms of number of benchmarks solved.

Although we’ve shown JFS to be generally superior to the existing search-based solvers, that

does not necessarilymean that JFS’s coverage-guided fuzzing technique is superior to the tech-

niques used by the other search-based solvers. Our results show that the existing search-based

solvers frequently crashed. Itmay be the case that higher quality implementations of the ideas

used by these search based solvers would be comparable to JFS or even superior. However,

improving the quality of these other solvers is out of scope for our work.

Our results also show that JFS is somewhat competitive on benchmarks that use a mixture of

floating-point and bit-vector constraints (QF_BVFPfs benchmark suite) compared with existing

solvers. JFS is able to show satisfiability formore benchmarks thanCOLIBRI, but slightly fewer

thanMathSAT5 and Z3. In terms of runtime performance JFS is less competitive than the other

solvers due to it infrequently showing satisfiability faster than the other solvers. In these in-

frequent cases, JFS could be used to complement existing solvers by being able to solve the

constraints faster. This supports our hypothesis.

Our results also show that JFS is generally inferior to existing solvers on bit-vector benchmarks

(QF_BVfs benchmark suite) but can still complement existing solvers by occasionally being able

to solve constraints faster. Although this is disappointing, these results don’t contradict our

hypothesis because our hypothesis was that our approach would be faster in some cases, not

all cases.
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These results show that itwouldbe verybeneficial to build a solver that uses JFS in combination

with another solver (i.e. a portfolio solver). If JFS were combined with a complete solver this

would also remove one of its major limitations, which is the fact it can only show satisfiability

(i.e. it can’t show unsatisfiability). We leave experimenting with this idea as future work.

A very natural question to ask is: “Why is there such a large difference between JFS’s perfor-

mance on bit-vector benchmarks and floating-point benchmarks?” We leave this for future

work, but we speculate that the reason is hidden bias in the benchmark suites. That is to say

the floating-point benchmarks are “easier” to solve than the bit-vector benchmarks.

Bit-vector solvers have been available for over a decade which has allowed a set of difficult

and challenging benchmarks to be developed over a long period of time. These benchmarks

likely evolved in difficulty as bit-vector solvers gradually increased their capability. Solvers for

floating-point constraints on the other hand are comparatively new and have had much less

time to develop. As a consequence, the available floating-point benchmarks are a reflection of

the relatively immature floating-point constraint solvers currently available.

It is also worth drawing an analogywith coverage-guided fuzzers applied to bug finding. These

fuzzers are typically only good at finding very shallow bugs and can only excel at finding deep

bugs with a large amount of compute time or with good seeds. It could be the case that the

floating-point benchmarks that JFShas been applied to are the equivalent of shallowprograms,

where bugs are easy for a fuzzer to find.

5.5 Related work

There is a large body of existing work that seeks to improve solving floating-point constraints.

This was previously discussed in §2.6.2.

The FloPSy [106] and CORAL [167] solvers applymeta-heuristic search techniques to try to find

satisfying assignments to floating-point constraints. Like JFS these methods are incomplete

because they can only show satisfiability (i.e. they cannot prove unsatisfiability). Both solvers

construct a fitness function which they either attempt tominimise ormaximise. JFS implicitly

has a fitness function which it is trying to maximise. This function is the number of covered

branches in the programs it generates. Like FloPSy and CORAL, JFS performs a search to try

to find values to maximise this function. This implicit fitness function is very coarse (a branch
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is covered, or it is not) in comparison to FloPSy and CORAL’s fitness functions, which grad-

ually change as candidate solutions get closer to a satisfying assignment. FloPSy’s evolution-

ary search algorithms are very similar to the coverage-guided mutations used in JFS. Despite

the coarseness of JFS’s fitness function, in our work we have compared JFS with CORAL and

have shown JFS to be superior, both in number of benchmarks it can show to be satisfiable,

and in execution time (in most but not all cases). This may be an artifact of CORAL’s imple-

mentation which was never designed to work with floating-point constraints from the SMT-

LIBv2.5 FloatingPoint theory. We implemented a tool to convert SMT-LIBv2.5 constraints

into CORAL’s native constraint language but in many cases the conversion wasn’t possible or

CORAL crashed. We could not compare with FloPSy because it is too tightly integrated with

Pex [171], the symbolic execution tool it is designed to work with. The CORAL solver supports

using an interval solver to improve the quality of its initial candidate inputs. It’s likely we could

apply a similar approach in JFS to generate higher quality seeds for the fuzzer. These solvers

don’t support the theory of FixedSizeBitVectors, unlike JFS. However, given that they rely on

meta-heuristic search, these solvers could support this theory if support was implemented.

The goSAT [25] and XSat [77] solvers both reformulate finding a satisfying assignment as a

mathematical optimisation problem and apply existingmathematical optimisation algorithms

to try to find a global minimum. This is very similar to FloPSy and CORAL in that the func-

tions that goSAT and XSat seek to minimise are essentially a fitness functions. The difference

is in the algorithms used to perform the search. Like JFS this strategy is incomplete. As pre-

viously mentioned JFS implicitly has a fitness function. However, JFS’s fitness function is very

coarse compared to the goSAT and XSat fitness functions. Despite this, in our comparison

with goSAT and XSat, we have shown JFS to be superior to both solvers in terms of the num-

ber of benchmarks solved and in most cases the execution time performance. This may be

an artifact of goSAT and XSat’s implementations. Both tools frequently crashed or reported

that they did support the supplied benchmarks. These solvers do not support the theory of

FixedSizeBitVectors, unlike JFS.

The MathSAT5 [46], SONOLAR [149], and Z3 [140] solvers all solve floating-point constraints by

transforming floating-point operations into bit-vector circuits and then bit-blasting these into

a SAT problem. This problem is then solved using a SAT solver. This approach is complete,

unlike JFS, but it can end up generating very large SAT problems, which are time consum-

ing to solve. Like JFS, these solvers support a combination of the FixedSizeBitVectors and
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FloatingPoint SMT-LIBv2.5 theories. In our work we have compared JFS against both Math-

SAT5 and Z3. Although JFS solves fewer benchmarks than Z3 (and fewer than both MathSAT5

and Z3 on some benchmark sets), we have shown that in many cases JFS’s search based strat-

egy is faster than the strategy used byMathSAT5 and Z3. This complementary behaviour of JFS

suggests that these solvers would likely benefit from incorporating a search-based strategy—

like JFS’s—in combination with their existing strategies to form a portfolio solver. In our work

we did not compare against SONOLAR. Such a comparison should be straightforward given

that the solver claims to support the SMT-LIBv2.5 FloatingPoint theory. We did not perform

a comparison simply because we were not aware that the solver supported the FloatingPoint

theory when we started our experiments. The inclusion of SONOLAR in our experiments is

unlikely to change our results for several reasons. First, SONOLAR uses essentially the same

techniques as the MathSAT5 and Z3 solver which we already compare against. Second, a pub-

lic release of SONOLAR has not been made since 2014, whereas MathSAT5 and Z3 are actively

developed. Given this extra development time we expect that MathSAT5 and Z3 would outper-

form SONOLAR.

The COLIBRI [36] and FPCS [133] solvers use interval solving as a complete method for solving

floating-point constraints. The COLIBRI solver like JFS supports a combination of BitVector

and FloatingPoint theories. In our work we compared with COLIBRI. COLIBRI in most cases

solved more benchmarks than JFS, however it also gave wrong results and was often slower

than JFS.This suggests thatCOLIBRImight benefit from incorporating a search-based strategy—

like JFS’s—in combination with their existing strategies to form a portfolio solver. In our work

we did not compare against FPCS because it is not publicly available. Even if the solver was

publicly available it is very unlikely that it supports the SMT-LIBv2.5 FloatingPoint theory

given that is was developed in 2001 and likely has not been updated since. This would require

us to implement a constraint language converter in a similarmanner to what we have done for

the CORAL solver.

The REALIZER [112] solver tries to solve floating-point constraints by transforming (in an equi-

satisfiablemanner) floating-point constraints into constraints over reals. This strategy is sound

but is not complete because theories over reals are undecidable. Despite taking an undecid-

able approach, this strategy might be able to show some constraints as unsatisfiable which

JFS can only do in very trivial cases. REALIZER’s strategy is particularly suitable for working

with constraints that check the accuracy of floating-point expressions compared to their real
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counterparts. JFS cannot serve this use case because it cannot handle constraints over reals.

Technically it would be possible to have JFS generate a program over reals. However, fuzzing

themwould require under-approximating the input space, which is infinite, with a finite input

space.

Other researchers have compared search-based solvers to existing solving methods. Takaki et

al. [169] compared the CVC3 [21] solver to a set of random solvers, heuristic solvers, and port-

folio solvers. As in our work, the authors concluded that a portfolio approach would perform

best. In contrast though, our comparison focuses on floating-point constraint solvers and thus

includes many state-of-the-art floating-point constraint solvers.

5.6 Conclusion

In this chapter we presented our investigation into using coverage-guided fuzzing as amethod

for finding satisfying assignments to floating-point constraints. This work was motivated by

poor floating-point constraint solver performance, observed in our work in Chapter 4. Poor

floating-point constraint solver performance was the research problem we sought to tackle.

Ourhypothesiswas that using coverage-guided fuzzing to solvefloating-point constraintswould

be faster than existing floating-point constraint solvers in some cases. To test this hypothesis

we implemented a prototype solver (JFS) that generates programs fromconstraintswhere path

reachability is equivalent to finding a satisfying assignment. JFS then applies an off-the-shelf

coverage-guided fuzzer to try and find an input to trigger execution down the path that finds a

satisfying assignment to the original constraints. We then compared our prototype against six

existing state-of-the-art floating-point constraint solvers on three existing benchmark suites.

Our results support our hypothesis. On two benchmark suites, JFS is highly competitive with

existing solvers in terms of the number of benchmarks solved. On one benchmark suite, JFS in

many cases solves the benchmarks faster than each solver we compared with. On one bench-

mark suite (one that uses only bit-vectors and no floating-point constraints), JFS solves very

few benchmarks compared to other solvers. However on this benchmark suite JFS occasion-

ally solves benchmarks faster than each solver we compared with. The performance of JFS

suggests that existing solvers would benefit incorporating JFS’s strategy into their existing set

of strategies to create a portfolio solver. Creating a portfolio solver would also alleviate JFS’s
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biggestweakness, which is that it an incomplete solver. Recall from§5.1 that JFS canonly prove

unsatisfiability in trivial cases and so inmost cases can only prove satisfiability. Thus JFS is an

incomplete solver. However, combining JFS with a complete solver creates a complete solver

that does not suffer from JFS’s incompleteness and has all of JFS’s performance benefits.
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Chapter 6

Conclusion and Future work

In this thesis we have presented three main contributions:

In Chapter 3 we investigated the problem of there being no existing comparison of symbolic

execution and other program analysis techniques (see §2.1) at the level of an intermediate

verification language (IVL - see §2.3.2). We had two hypotheses. First, that symbolic execu-

tion of an IVL is competitive with other techniques in terms of bug finding and verification.

Second, that the state-of-the-art for symbolic execution of IVLs can be improved. To answer

these hypotheses, we implemented our own symbolic execution tool (Symbooglix) and com-

pared it to several existing programanalysis tools for the Boogie IVL over two large benchmark

suites. We showed that Symbooglix outperforms an existing symbolic execution tool (Booga-

loo), which supports our second hypothesis. We found that Symbooglix is very competitive

with existing tools on one benchmark suite but less competitive on the other. However on this

benchmark suite Symbooglix was found to be complementary (i.e. some bugs are only found

by Symbooglix) to existing tools. This partially supports the first hypothesis.

In Chapter 4 we investigated the problem that most symbolic execution tools do not support

reasoning over symbolic floating-point programs due to the lack of support frommost under-

lying constraint solvers. Our hypothesis was that support for the SMT-LIBv2.5 FloatingPoint

theory [160] which is now available in some existing constraint solvers could be used by sym-

bolic execution tools to reason over floating-point programs. Unfortunately due to the of lack

support for floating-point programs in the Boogie IVL, we could not use Symbooglix for this

investigation. Instead we extended the KLEE symbolic execution tool to reason over floating-

point programsbyusing the support for the FloatingPoint theory in Z3. Coincidently, a differ-
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ent research group started investigating the same problem and also extended KLEE at roughly

the same time. We used this opportunity to collaborate and compare our implementations on

a set of benchmarks developed by both research groups. Both implementations were able to

symbolically execute a subset of the floating-point programs we developed to compare the im-

plementations partially true. Although it indeed possible to use the FloatingPoint theory to

reason over floating-point programs, we observed that such an approach does not scale well

due to poor constraint solver performance. These results partially support our hypothesis.

In Chapter 5 we investigated the problem raised at the end of Chapter 4, namely that the per-

formance of existing floating-point constraint solvers is inadequate. Our hypothesis was that,

in some cases, coverage-guided fuzzing could be used as a method to solve floating-point con-

straints faster than existing approaches. To test this hypothesis we implemented a prototype

solver (JFS) that generates programs from constraints where path reachability is equivalent

to finding a satisfying assignment. JFS then applies an off-the-shelf coverage-guided fuzzer to

try and find an input to trigger execution down the path that finds a satisfying assignment to

the original constraints. We then compared our prototype against six existing state-of-the-art

floating-point constraint solvers on three existing benchmark suites. Our results support our

hypothesis. On two benchmark suites, JFS is highly competitive with existing solvers in terms

of the number of benchmarks solved. On one benchmark suite, JFS in many cases solves the

benchmarks faster than each solverwe comparedwith. Ononebenchmark suite (one that uses

only bit-vectors and no floating-point constraints), JFS solves very few benchmarks compared

to other solvers. However on this benchmark suite JFS occasionally solves benchmarks faster

than each solver we compared with. The performance of JFS suggests that existing solvers

would benefit incorporating JFS’s strategy into their existing set of strategies to create a port-

folio solver.

We see several directions for possible future work related to these topics:

Symbolic execution for intermediate verification languages The main limitation of Sym-

booglix at the time of writing relates to its limited support for quantifiers. Given that symbolic

execution works on a per-path basis, it may be possible to exploit path-specific knowledge to

instantiate the quantifiers that appear in an axiom or assertion in a smart way, attempting to

avoid passing quantified formulae to the underlying SMT solver. This is related to work on us-

ing “triggers” for quantifier handling in SMT solvers [138], but we speculate that path-specific
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information may be useful in avoiding quantifiers altogether in some cases, so that triggers

are unnecessary, or at least in optimizing the form that at a trigger takes so as to guide the SMT

solver as much as possible.

Another limitation of Symbooglix at the time of writing is its lack of support for generating test

cases. There are two complications in doing this. First, Symbooglix needs to support gener-

ating test cases that contain unbounded maps (an infinite data structure) and provide imple-

mentations for uninterpreted functions. This is more complicated than generating test cases

for conventional programming languages because unbounded maps and uninterpreted func-

tions do not exist in these languages. However, given that Symbooglix’s underlying constraint

solver can generate a model for these cases that is expressible in a finite manner, it should be

possible to implement support in Symbooglix. The second complication is that the front-end

used to generate the Boogie program executed by Symbooglix needs to provide a mechanism

of translating a test case for the Boogie program into a test case for the original program that

was used to create the Boogie program. There is currently no standard mechanism for doing

this and illustrates an areawhere the separation of concerns providedby theBoogie IVLbreaks

down. Without a common interface to represent test cases, both the front-end and back-end

need to be concerned with how test cases are represented.

Another direction is to apply the approach of stratified inlining, applied by the Coral tool [108],

in the context of per-path symbolic execution. Stratified inlining involves performing analy-

sis with procedures replaced by their specifications, inlining procedures on demand when an

abstract counterexample reveals that a potential error would traverse a given procedure. It

is straightforward to perform procedure summarisation during per-path symbolic execution,

andwe envisage using backwards program slicing to over-approximatewhether a summarised

procedure may contribute to a possible error: if it provably cannot, there is no need to inline

the procedure in attempting to produce an input that can trigger the error. Employing proce-

dure abstraction during symbolic execution has the potential to reduce path explosion signif-

icantly, even offering an infinite reduction in paths if a procedure that would yield an infinite

number of paths can be summarised on an abstract path that proves to be error-free.

Symbolic execution of floating-point programs One obvious future direction for our work is

to combine the two separate implementations of floating-point support in KLEE into a single

implementation that can be contributed upstream and so used by other researchers. The im-
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plementation written by Imperial showed superior performance, however the Aachen imple-

mentation more accurately modelled the x86_fp80 data type. It will require further investiga-

tion to determine how the design differences of the two tools can be unified.

Another interesting direction to take our work is to investigate the use of Z3 tactics [141] to

improveperformance. Tactics allow theuser of Z3 to have control over thehigh level reasoning

steps used to solve queries. This allows the solver to be tweaked to the specific problemdomain

being tackled. For example the array ackermannization optimization implemented in one of

the forks of KLEE can actually be implemented using two Z3 tactics combined—bvarray2uf

followed by ackermannize_bv. A patch for upstream KLEE sketching this idea has already

been submitted for review.1

Another idea is to integrate the JFS solver into ourmodified version of KLEE. The performance

of a fuzzer is highly dependent on the seeds (initial inputs) it is given. In the context of symbolic

execution, inputs that satisfy previously visited paths are already known. These inputs could

be used to seed the fuzzer with interesting inputs that could reduce JFS’s solving time and thus

improve KLEE’s performance. JFS is of course an incomplete solver and so it would need to

be paired with another complete solver to be used as part of a portfolio of solvers. This would

allow KLEE to benefit from JFS’s ability to solve some satisfiable queries quickly but still fall

back to another solver when JFS fails to return an answer in a timely manner.

A natural extension of our work would be to investigate supporting features of floating-point

programs that are difficult to model in the SMT-LIBv2.5 FloatingPoint theory.

The first feature is IEEE-754 floating-point exceptions. The SMT-LIBv2.5 FloatingPoint the-

ory does not provide functions to determine if these exceptions can be raised. A consequence

of this is that our tools do not support floating-point programs that query if any floating-point

exceptions have been raised. To support this feature each execution state would need tomain-

tain its own set of raised floating-point exceptions. In the case that floating-point operations

are performed on symbolic data the state of each floating-point exception flag would also be-

come symbolic. This poses a problem because the expressions representing the floating-point

exception flags would likely become excessively large during execution. This could be ex-

1https://github.com/klee/klee/pull/659
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tremely wasteful because it could be the case that the state of the floating-point exception flags

are never read. Further investigation is required to devise techniques that allow modelling

IEEE-754 floating-point exceptions to be scalable.

The second feature is signaling and quiet NaNs. The SMT-LIBv2.5 FloatingPoint theory does

not distinguish between signaling and quiet NaNs. Consequently this means that our tools do

not correctly handle floating-point programs that require this distinction to be made. One

approach to resolve this would be to symbolically track NaNs being used in every floating-

point operation so that it is possible to determine the type of NaN that would be produced by

each operation. This would incur a large overhead and would also be wasteful in cases where

the distinction between NaN types is not required. A second approach would be to change the

FloatingPoint theory itself. It is likely there would be resistance to such a change by floating-

point constraint solver authors because it would make the implementations of these solvers

more complicated. Further investigation is required to find the best solution to this problem.

Thefinal feature is the x86_fp80 type. This type is not an IEEE-754floating-point type and there-

fore isn’t supported by the SMT-LIBv2.5 FloatingPoint theory. In Chapter 4 we discussed two

approaches for handling the x86_fp80 type using the SMT-LIBv2.5 FloatingPoint type. One

approach ignored thenon IEEE-754 classes (e.g. unnormal) and the other approach chose to ex-

plicitly model them. We do not know if any of these approaches (or another, yet-to-be-devised

approach) are suitable because our benchmarks made limited use of the x86_fp80 type. Fur-

ther investigation is required to determine an approach that is optimal for real world floating-

point programs.

Constraint solving via coverage-guided fuzzing One obvious issue that arises from our work

in Chapter 5 is the performance difference of JFS between the bit-vector benchmarks and the

floating-point benchmarks. In Chapter 5 we speculated that the reason for this might be bias

in the benchmarks suites we used. This requires further investigation.

Another issuewith ourwork in Chapter 5 is that we do not knowwhether JFS’s coverage guided

approach is superior to just trying completely random inputs because none of the solvers use

this approach. To address this we would need to implement a drop-in replacement for Lib-

Fuzzer that JFS could invoke. This drop-in replacement would just try random inputs without

guidance from program coverage. This modified configuration of JFS could then be added to

our comparison of existing solvers.
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There are lots there are lots potential improvements to JFS that could be investigated.

Currently JFS just invokes a single fuzzing process and thus only uses a single CPU. On multi-

core systems (which are now commonplace) it may be beneficial to invoke multiple copies of

the fuzzer (each with a different random seed) and have them share the same corpus directory

so that each fuzzer benefits from the inputs discovered by the other fuzzers.

Currently JFS just emits branches in the generated program using a try-all approach where ev-

ery constraint is evaluated even if some constraintswere determined to be false for the current

input. It may be the case that a different constraint evaluation approach in JFS-generated pro-

grams would offer better performance. For example a fail-fast approach could stop evaluating

constraints for the current input as soon as a constraint is found to be false.

In the current implementation of JFS, compiler optimisations are disabled for performance

reasons. It would be interesting to investigate which optimisations are beneficial to fuzzing,

and in particular in the context of JFS. It may be worth applying optimisations that complicate

the control flow so that the fuzzer records inputs that traverse the additional paths. These

additional inputs then indirectly act as mutation hints for the generation of more inputs. For

example comparing two 64-bit integers could be split into eight separate byte comparisons.

This could be beneficial and has already been tried by other researchers.2

The equality extraction pass is currentlymissing several opportunities to detect equalities. For

example equalities through conversion operations (e.g. conversion of a free bit-vector variable

to a floating-point type that is then asserted to be equal to another floating-point expression)

are not supported. It might also be worth adding support for the fp.eq function, which acts

like SMT-LIB equality except for a few special values that would need to be handled specially.

Currently JFS tries to solve all constraints together. In the case that the constraints contain

multiple independent subsets (i.e. free variables are not shared between subsets) it might be

beneficial to fuzz each subset of constraints separately and inparallel to increase performance.

JFS currently uses LibFuzzer’s built-inmutators (with slight modification). Thesemutators are

not aware of the structure of the data that JFS-generated programs use. It would be interesting

to investigate using custom mutators that are aware of the structure of the data (e.g. that the

first 8 bytes of the input represent a 64-bit IEEE-754 floating-point number).

2https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-
transformations/
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JFS currently doesn’t support converting the input found by LibFuzzer into a model that satis-

fies the original constraints. Implementing support for this would allow JFS-generatedmodels

to be validated and would be useful to users of JFS who need the model associated with the

satisfiability result.

Finally, the seeds provided to a fuzzer have a huge impact on the search progress of a fuzzer.

Currently JFS just generates two seeds, one with all bits being zero, and one with all bits being

one. This is a very naive strategy because the seeds are basically the upper and lower bounds

of a very large search space. There are heuristics that could be used to seed the fuzzer with

more interesting inputs. One heuristic would be to assign free variables values from a set of

predefined interesting values. For example, if the type of the free variablewas FloatingPoint,

the set of interesting values could be set to {+0.0,−0.0,NaN,+Infinity,−Infinity}. Another

heuristic would be to scan the query for constants and add them to the set of interesting values

to assign to free variables. The number of seed combinations grows exponentially with the

number of free variables. Therefore a limit would need to be enforced to prevent the set of

seeds from becoming too large. Another heuristic would be to use the approach of the CORAL

solver. CORAL uses an interval solver to find conservative bounds on satisfying assignments

and uses values within these bounds to seed the search. A similar approach could be imple-

mented in JFS.

Aside from applying JFS to symbolic execution as previously mentioned, JFS has great poten-

tial for experimenting with extensions to the SMT-LIB FloatingPoint theory. For example the

transcendental floating-point functions such as sine and cosine are not part of the standard.

However because JFS executes native code it can simply call any implementation of the tran-

scendental floating-point functions available to it (e.g. the implementation from the host op-

erating system’s C math library) to represent these functions. These functions are typically

weakly specified but this might be sufficient depending on the domain JFS is being applied to.
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Appendix A

Expected number of attempts at

guessing a value

A.1 Uniform random guesses

Wewant to calculate the expected number of attempts required to guess an integer between 0

andN − 1, inclusive. Note this is the average (arithmetic mean) number of attempts required

if this process of guessing was repeated forever.

Let us first assume that probability of guessing the integer in any single attempt is p. The

expected number of attempts, 〈A〉, is then given by equation A.1.

〈A〉 = lim
C→∞

1 · p+ 2(1− p)p+ 3(1− p)2p+ . . .+ C(1− p)C−1p (A.1)

=

∞∑
i=1

i(1− p)i−1p (A.2)

In words, this is the probability of guessing correctly on the first go, p, multiplied by 1 , plus

the probability of first guessing incorrectly and then correctly, (1 − p)p, multiplied by 2, and

so on and so forth.

Now let us assume that probability p, is uniformly random, i.e. p = 1
N . Equation A.1 now

becomes equation A.3.

〈A〉 =
∞∑
i=1

i

(
N − 1

N

)i−1 1

N
(A.3)
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We nowmultiply equation A.3 byN to give equation A.4, and by (N − 1) to give equation A.5.

〈A〉N = 1 + 2

(
N − 1

N

)
+ 3

(
N − 1

N

)2

+ . . . (A.4)

〈A〉(N − 1) =

(
N − 1

N

)
+ 2

(
N − 1

N

)2

+ 3

(
N − 1

N

)3

+ . . . (A.5)

Wenow subtract equationA.5 fromequationA.4 to give equationA.6, which simplifies to equa-

tion A.7.

〈A〉 (N − (N − 1)) = 1 + (2− 1)

(
N − 1

N

)
+ (3− 2)

(
N − 1

N

)2

+ (4− 3)

(
N − 1

N

)3

+ . . .

(A.6)

〈A〉 =
∞∑
i=0

(
N − 1

N

)i

(A.7)

Equation A.7 is a geometric series. Recall that a geometric series of the form given shown on

the left hand side of equation A.8 converges to the value on the right hand side if |x| < 1.

∞∑
i=0

xi =
1

1− x
if |x| < 1 (A.8)

This allows us to simplify equation A.7 to equation A.9.

〈A〉 = N (A.9)

That is to say, the expected number of attempts at guessing an integer between 0 and N − 1

inclusive isN .
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A.2 Uniform random guess with feedback

We now look at the expected number of attempts to randomly guess the value of an integer,

but where guessed are performed a byte at a time, and feedback is received when the guess

of a byte is correct. This approximately models a fuzzer guessing a byte at a time and getting

coverage feedback when it makes a correct guess.

The expected number of guesses, 〈A〉, to guess B bytes is given by equation A.10, where Px is

the probability of correctly guessing all B bytes in x guesses (where x >= B).

〈A〉 = lim
C→∞

BPB + (B + 1)PB+1 + (B + 2)PB+2 + . . .+ (B + C)PB+C (A.10)

We now need to compute Px. Let us first assume that the probability of guessing any one

particular byte correctly is given by p. Let us also assume that when feedback is received that

a byte value was correctly guessed, that this is recorded, but which particular byte was the

correct is ignored for subsequent guesses. This may seem like an odd choice, but it simplifies

the calculation because it makes p constant. For example, if there were 6 bytes and we assume

uniform probability of picking a byte, then p = 1
6 ·

1
256 . This means that even after correctly

guessing one byte, the fraction in p does not change from 1
6 to

1
5 . This odd choice also roughly

reflects the behaviour of a coverage-guided fuzzer. The fuzzer records an input (i.e. a guess)

that increases coverage (i.e. one of the byte assignments is correct) but doesn’t use the fact it

knowswhichone is correct is subsequent guesses (i.e. itmay latermutate abyte that it correctly

guessed). We say roughly because this ignores other behaviours that a coverage-guided fuzzer

might have such as cross-over mutations and using a corpus of existing inputs.

We can now give a formulas for the probabilities.

189



PB = pB

PB+1 = B(1− p)pB

PB+2 =
(B + 1)B

2
(1− p)2pB

. . .

Px =

(
x− 1

x−B

)
(1− p)x−BpB

Note that
(
x−1
x−B

)
is the binomial coefficient (also known as choose). This factor is required be-

cause we have to consider the various possible combinations of correct and incorrect guesses.

For example, if B = 4 and we are considering PB+1, then we need to consider that in the se-

quence of guesses, the one incorrect guess can occur at four different positions. Note it can’t

occur as the last guess because we stop guessing once all bytes have been correctly guessed.

The formula for 〈A〉 is nowgivenby equationA.11which can thenbe rewritten as equationA.12

by performing the substitution j = i−B.

〈A〉 =
∞∑
i=B

i

(
i− 1

i−B

)
(1− p)i−BpB (A.11)

〈A〉 =
∞∑
j=0

(j +B)

(
j +B − 1

j

)
(1− p)jpB (A.12)

Unfortunately this is where our algebraic treatment of this equation ends. This infinite series

can be shown to converge by the “ratio test”. However we do not know how to show what it

convergences to.

However the Wolfram Alpha tool1 can show what it converges to for concrete values. For the

particular example that references this appendix, p = 1
6 ·

1
256 andB = 6. Entering the following

text intoWolfram Alpha will cause it to report that the infinite series converges to 9216.

sum 0 to infinity (j+6)*((j + 5) choose j) * (1 - (1/1536))^j * ((1/1536)^6)

1https://www.wolframalpha.com/
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