Finding dataraces in  Danielliew — Jmperial College

Cristian Cadar

OpenCL kernels Alastair Donaldson

The Problem

Running parallel programs written in OpenCL | #define tid get global id(0) N\

: : #define N get global size(0)
for GPUs has the pOtentlal for increased kernel void dotProduct( global int* restrict A,

performance. However writing correct a " global int* restrict B,
111 lobal int* trict C
OpenCL programs can be difficult. In __global int* restrict C)

particular, data races are difficult for Cltid] = A[tid] + B[tid]:
programmers to debug barrier (CLK GLOBAL MEM FENCE) ;

for (int i=N/2; i > 0; i >>=1)

This kernel has several data B < i )

races. Can you find them all? Cleid] += Cltid + i];

barrier (CLK GLOBAL MEM FENCE) ;

The Research Question

Various techniques exist for finding data races in OpenCL kernels. Two such techniques are

e Symbolic execution (e.g. KLEE- CL1%wh|ch is usually precise but scales poorly (executes all work-items explicitly)
e Formal verification (e.g. GPUVerify“) which is usually imprecise (uses abstractions) but scales well

Is it possible to combine these techniques in a way that can find bugs more effectively?

" Collingbourne, et al. Symbolic Crosschecking of Data-Parallel Floating-Point Code. TSE 2014 ? Betts et al. GPUVerify: a Verifier for GPU Kernels. OOPSLA 2012

Our approach

GPUVerlfy front-end

'
'
!
!

OpenCL ! LLVM Boogie Race Boogie
kernel ' cl ang bitcode Bugl € program - program
, instrumenter

!
|
@

Use GPUVerity's front—end.to Invoke GPUVerify's back-end to
convert an OpenCL kernel into a .
attempt formal verification. If

race instrumented Boogie L
verification succeeds then @

program there are no data races
. Bug GPUVerify
@ report E back-end
If verification fails, pass reported Confirmed bugs +
bugs (may contain false Synthesised buggy
positives) to Symbooglix, our inouts
symbolic execution engine for P Verified
Boogie programs. The bug report :
is used to guide execution Unc%nufglsrmed

This poster was produced for the (GO Q le 2014 poster competition
This work is generously funded by an EPSRC CASE studentship in collaboration with ARM



